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We consider a market run by an operator, who seeks to satisfy a given consumer demand for a commodity by

purchasing the needed amount from a group of competing suppliers with non-convex cost functions. The

operator knows the suppliers’ cost functions and announces a price/payment function for each supplier, which

determines the payment to that supplier for producing different quantities. Each supplier then makes an

individual decision about how much to produce, in order to maximize its own profit. The key question is how

to design the price functions. To that end, we propose a new pricing scheme, which is applicable to general

non-convex costs, and allows using general parametric pricing functions. Optimizing for the quantities and

the price parameters simultaneously, and the ability to use general parametric pricing functions allows our

scheme to find prices that are typically economically more efficient and less discriminatory than those of the

existing schemes. In addition, we supplement the proposed method with a polynomial-time approximation

algorithm, which can be used to approximate the optimal quantities and prices. Our framework extends to the

case of networked markets, which, to the best of our knowledge, has not been considered in previous work.

1 INTRODUCTION
While there has been a long history of studying markets under convexity assumptions (such as

convexity of cost functions, preferences, etc.) in economic theory, non-convexities are ubiquitous
in most real-world markets. Non-convexities in cost functions arise due to start-up or shut-down

costs, indivisibilities, avoidable costs, or simply economies of scale.

It has been widely noted in the literature that in the presence of non-convexities, there may be no

linear prices (constant per quantity) that support a competitive market equilibrium, e.g. [6, 9], and

it was suggested as early as 1980s that in these markets one needs to consider using price functions,
as opposed to the conventional prices [20]. Following the work of Scarf [16, 17], there have been

many pricing schemes proposed in the literature. In particular, during the past decade, motivated

by the deregulation of the electricity markets in the US and around the world, the problem of

pricing in non-convex markets has attracted renewed interest from researchers, and there has been

considerable work on this problem [12]. These pricing schemes are deployed in practice, and the

operation and efficiency of our electricity markets relies on them [2].

Formally, the non-convex pricing problem is that, given an inelastic demand for a commodity

from a number of consumers, a market operator seeks to satisfy the demand by purchasing the

required amount from a group of competing suppliers with non-convex cost functions. The operator

knows the suppliers’ cost functions, and it announces a price/payment function for each supplier,

which determines the payment to that supplier for producing different quantities. Each supplier

then makes an individual decision about how much to produce in order to maximize its own profit.

The key design question is how to devise the price functions in order to ensure certain economic

properties for the market. We should remark that this problem is quite different from mechanism

design, since the cost functions of the suppliers are known to the market operator, and the players

can influence the market only by choosing their production level. However, as we shall see, the

design of the price functions in these markets is challenging.

An important early approach to the pricing problemwas the work of O’Neill et al. [14], sometimes

referred to as integer programming (IP) pricing, which considered the class of non-convexities

that arise from the start-up costs of the suppliers (with linear marginal costs). The paper proposes
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a clever pricing rule, based on solving a mixed-integer linear program and forcing the integral

variables to their optimal values as a constraint. The scheme is economically efficient and has

a nice dual interpretation. Modified versions of IP pricing have been proposed by Bjørndal and

Jörnsten [4, 5] among others. Another approach, proposed for the more general class of non-convex

cost functions that are in the form of a start-up plus a convex (rather than linear) cost, is the

minimum-uplift (MU) pricing of Hogan and Ring [10], and its closely related refinement of Gribik

et al. [8], known as convex hull (CH) pricing. These schemes provide discriminatory uplifts to

different suppliers to incentivize production, and the uplifts are minimal in a specific sense [18].

The possibility of having both positive and negative uplifts was also considered by [7, 13]. Other

pricing schemes include the semi-Lagrangian relaxation (SLR) approach of Araoz and Jörnsten [1],

and the primal-dual (PD) approach of [15]. These schemes seek to find uniform linear prices that

are revenue-adequate (but not supporting of the equilibrium). A survey on all the above pricing

schemes was recently written by Liberopoulos and Andrianesis [12]. However, the overall desired

properties, as well as the properties that each of the schemes satisfy, were not examined there. We

formalize the desired properties considered in the literature in Section 2, and discuss the properties

of the existing schemes in Section 5. Table 1 summarizes the common schemes and their properties.

Despite the large body of work on the pricing problem, the existing schemes have several

shortcomings. For example, most of the existing schemes mentioned above are proposed for specific

classes of non-convex cost functions, and cannot handle more general non-convexities. Furthermore,

even the ones that are applicable for general cost functions fail to satisfy some of the key desired

properties of the market, such as economic efficiency or supporting a competitive equilibrium. In

addition, none of the existing schemes is accompanied by a computationally tractable algorithm for

general non-convexities, and they typically rely on off-the-shelf heuristic solvers for mixed-integer

programs that are known to be NP-hard.

In this paper, we propose a pricing scheme for markets with general non-convex costs that

designs arbitrary parametric price functions and addresses all the issues mentioned above. Our

approach finds the optimal schedule (allocation) and the optimal pricing rule simultaneously, which

generally allows for finding economically more efficient solutions. The ability to use arbitrarily

specified parametric price functions (e.g. piece-wise linear, quadratic, etc.) enables our approach to

design price functions that are less discriminatory, while still supporting a competitive equilibrium.

Furthermore, our pricing scheme is accompanied by a computationally efficient (polynomial-time)

approximation algorithm which allows one to find the approximately-optimal schedule and prices

for general non-convex cost functions. Lastly, we extend the proposed pricing rule to networked
markets, which, to the best of our knowledge, are not considered in any of the existing work.

Specifically, this paper makes the following contributions.

(1) We propose a framework for pricing in markets with general non-convex costs, using general
price functions (Section 3.1). Our scheme seeks to find the optimal price functions and

allocations simultaneously, while imposing the equilibrium conditions as constraints. For

this reason, our approach is generally economically more efficient than the existing methods,

while satisfying the equilibrium conditions. Moreover, the ability to use general price forms

allows one to obtain more uniform prices (smaller “uplifts”).

(2) We supplement our pricing scheme with a computationally efficient (polynomial-time) ap-

proximation algorithm for finding the allocations and prices (Section 3.2).

(3) We extend our framework to networkedmarkets, and also propose an approximation algorithm

that can compute the solution efficiently for acyclic networks, a common scenario in electric

distribution networks (Section 4).
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(4) We survey the common pricing schemes proposed in the literature for markets with non-

convex costs and provide a compact summary of their properties (Section 5).

(5) We evaluate the proposed method through extensive numerical examples, and show how it

compares with the existing methods (Section 6).

2 MARKET DESCRIPTION AND PRICING OBJECTIVES
While our goal in this paper is to design an economically and computationally efficient pricing

scheme for non-convex networked markets, we begin with the problem of designing one for a single
market, which is difficult in its own right. We return to the case of networked markets in Section 4.

When the cost functions are non-convex, even this seemingly simple problem has proven to be

challenging, and a wide variety of pricing schemes have been proposed for it in the literature. In

the following, we describe the market model and survey the desired market properties.

2.1 Market Model
We consider a single market consisting of n competing suppliers (often referred to as firms or

generators). The market is run by a market operator that seeks to satisfy a deterministic and

inelastic demand d for a commodity in a single period. Each supplier i has a cost function ci (qi ) for
producing quantity qi , which may be non-convex.

The suppliers’ cost functions are known by the operator, and the operator uses them to determine

the prices. In particular, the operator announces price/payment functions pi (qi ), which determine

the payment to supplier i when producing qi . Note that, in general, the price functions can be

different for different suppliers, but it is often desired to have close-to-uniform prices.

Upon the announcement of the price functions, each supplier i makes an individual decision,

based on the price function pi (·) and the cost function ci (·), about how much to produce (and

whether to participate in the market), in order to maximize its own profit, i.e., pi (qi ) − ci (qi ). The
suppliers are then paid for their production according to the payment function, and the demand

(consumers) is charged for the total payment.

This model is classical, and has been studied in a wide variety of contexts, initially under the

assumption of convex cost functions for production and linear pricing functions, but more recently

under non-convex cost functions. Non-convex cost functions are particularly important in the

context of electricity markets. As a result, there is a large literature focusing on non-convex pricing

in electricity markets, see [12] for a recent survey. Often this literature assumes specific forms of

non-convexities (e.g., startup/fixed costs), and specific forms of payment functions (e.g., linear plus

uplift). The results from this literature have guided the design and operation of electricity markets

across the world today.

2.2 Pricing Objectives
The key design question in the market described above is how to devise the payment functions. The

goal of the operator is to (1) find the optimal quantities q∗i , and (2) design the payment functions

pi (·) that ensure that the suppliers produce the optimal quantities q∗i .
There is a huge design space for such payment functions, and there is a large literature evaluating

proposals in the context of non-convex cost functions, e.g., [1, 4, 8, 10–12, 14, 15, 18].

From this literature has emerged a variety of desirable properties which pricing rules attempt to

satisfy. The following is a summary of the most sought-after properties in this literature. Note that

no existing rules satisfy all of these properties for general non-convex markets.

(1) Market Clearing (a.k.a. Load Balancing): The total supply is equal to the demand, i.e.,∑n
i=1 q

∗
i = d .
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(2) Economic Efficiency
(a) Minimal Production Cost (Suppliers’ Total Cost): The total production cost of the suppli-

ers, i.e.

∑n
i=1 ci (q

∗
i ), is minimal.

(b) Minimal Payment (Total Paid Cost): The total cost that is paid to the suppliers for the

commodity, i.e.

∑n
i=1 pi (q

∗
i ), is minimal.

(3) Incentivizing
(a) Revenue Adequacy: For every supplier, the net profit at the optimum is nonnegative, i.e.,

pi (q
∗
i ) − ci (q

∗
i ) ≥ 0, for i = 1, . . . ,n.

(b) Support a Competitive Equilibrium: The optimum production quantity for each sup-

plier is a maximizer of its individual profit, i.e.,q∗i ∈ argmaxqi pi (qi )−ci (qi ), or equivalently
pi (q

∗
i ) − ci (q

∗
i ) ≥ maxqi,q∗

i
pi (qi ) − ci (qi ), for i = 1, . . . ,n.

(4) Simplicity and Uniformity: The price functions are simple and interpretable (ideally linear:

pi (qi ) = λiqi ) and non-discriminatory (ideally uniform across suppliers: pi (qi ) = p(qi )).
(5) Computational Tractability: The optimal quantities and price functions can be com-

puted/approximated in time that is polynomial in n.

A few remarks about these properties are warranted. Property 1 ensures that the demand is met.

Property 2 is somewhat more elaborate and concerns the economic efficiency of the scheme, in

terms of total expenditure. Even though in certain cases (e.g. in IP pricing of [14] for startup-plus-

linear costs), the suppliers’ total cost

∑n
i=1 ci (qi ) and the total paid cost

∑n
i=1 pi (qi ) match and are

both minimal, there is an inevitable gap between the two in general. Ultimately, the quantity which

determines the cost of satisfying the demand is the total payment to the suppliers

∑n
i=1 pi (qi ), and

therefore Property 2b is arguably more crucial than Property 2a. However, ostensibly, because the

price functions are not directly available while computing the optimal quantities, many pricing

schemes have resorted to minimizing the total suppliers’ cost

∑n
i=1 ci (qi ) as a surrogate for the paid

cost. In this paper, we advocate a direct approach for minimizing the total payment.

Property 3 incentivizes the suppliers to follow the dispatch and produce the socially-optimal

quantities. More specifically, Property 3a ensures that the suppliers do not lose by producing q∗i ,
and further, Property 3b assures that it is in each supplier’s best interest to follow the dispatch.

Property 3b is generally a stronger condition than Property 3a, and if pi (0) = ci (0) = 0 ∀i , then (3b)

implies (3a).

Property 4 concerns having price forms that are “close to linear” (simple) and “close to uniform”

(non-discriminatory), in some sense. One common approach to this is to use uniform linear prices

plus a generator-dependent “uplift,” i.e. pi (qi ) = λqi + ui1qi=q∗
i
, and try to minimize the uplifts

ui . As Property 4 is subjective by its nature, we allow arbitrary parametrized price functions in

our scheme. However, we also examine our scheme when applied to the popular minimal-uplift

approach. Note that Property 4 also rules out the use of “dictatorial” prices, in which the operator

pays the cost (plus an ϵ) only at the desired amount, and pays nothing for any other amount

produced.

The final property, Computational Tractability, is particularly challenging to address in the

context of non-convex markets. Nearly all standard approaches work by computing the optimal

production quantities and then deriving the prices from these quantities in some way. Under

general non-convex cost functions, this first step is already computationally intractable. Thus, it

is important to consider relaxations (approximations) of other properties if the goal is to enforce

computational tractability. To that end, we consider approximate versions of the Incentivizing and

Economic Efficiency conditions, which we discuss in Section 3.2. We propose an algorithm that

satisfies these approximate versions, while being computationally tractable.
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3 PROPOSED SCHEME: EQUILIBRIUM-CONSTRAINED PRICING
Most existing schemes in the literature (see Table 1 and Section 5 for a detailed summary) are

proposed for specific classes of non-convexities, and are not applicable for more general non-convex

costs. Furthermore, even the ones that are applicable for more general cost functions either already

lack some of the key properties (such as economic efficiency) or they lose those properties for

more general costs. Additionally, the existing schemes are not accompanied by a computationally

tractable algorithm for general non-convexities, and they typically rely on off-the-shelf heuristic

solvers for mixed-integer programs that are NP-hard. This serves to emphasize that no existing

pricing scheme satisfies the desired properties described in Section 2.2.

The main contribution of this paper is the introduction of a new pricing scheme, Equilibrium-
Constrained (EC) pricing, which is applicable to general non-convex costs, allows using general

parametric price functions, and satisfies all the desired properties outlined before, as long as

the price class is general enough. The name of this scheme stems from the fact that we directly

impose all the equilibrium conditions as constraints in the optimization problem for finding the

best allocations, as opposed to adjusting the prices later to make the allocations an equilibrium.

The optimization problem is, of course, non-convex, and non-convex problems are intractable in

general. However, we also present a tractable approximation algorithm for approximately solving

the proposed optimization.

We present the formulation of the optimization at the core of Equilibrium-Constrained pric-

ing in Section 3.1, and then develop an efficient algorithm for solving the optimization problem

approximately in Section 3.2.

3.1 Pricing Formulation
In this section, we propose a systematic approach for determining a pricing rule under generic

non-convex costs that minimizes payments and satisfies the properties outlined in Section 2.2,

while allowing flexibility in the choice of the form of price functions.

Specifically, consider a class of desired price functions, denoted by P, which can be an arbitrary

class such as linear, linear plus uplift, piece-wise linear, etc. This choice can be due to interpretabil-

ity/uniformity reasons or other practical considerations. The core of Equilibrium-Constrained

pricing is an optimization problem for finding the best price functions in P and the best allocations,

at the same time. The operator is buying the commodity from the suppliers, on behalf of the

consumers, and therefore its objective is to minimize the total cost incurred (total payment), subject

to the equilibrium constraints. The optimization problem can be expressed as follows.

Equilibrium-Constrained (EC) Pricing:

p∗ = min

q1, ...,qn
p1, ...,pn ∈P

n∑
i=1

pi (qi ) (1a)

s.t.

n∑
i=1

qi = d (1b)

pi (qi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (1c)

pi (qi ) − ci (qi ) ≥ max

q′i,qi
pi (q

′
i ) − ci (q

′
i ), i = 1, . . . ,n (1d)

Constraints (1b), (1c) and (1d) are the Market Clearing, Revenue Adequacy, and Competitive

Equilibrium conditions, respectively. Constraint (1d) can also be equivalently expressed as

pi (qi ) − ci (qi ) ≥ pi (q
′
i ) − ci (q

′
i ) ∀q′i , qi , i = 1, . . . ,n. (2)
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The key difference between EC pricing and the existing methods for pricing in non-convex

markets is that it directly minimizes the total paid cost and seeks to find both the optimal allocations

q∗i and the optimal price functions p∗i (.) simultaneously. The scheme enforces the desired economic

properties as constraints, while allowing the use of any class of price functions, rather than imposing

a fixed form for the price.

Since this scheme minimizes the total payments, and does not impose any explicit constraint on

the total production cost, it would be natural to ask what happens to latter quantity as we minimize

the former. The minimum total production cost is defined as c∗ =
∑n

i=1 ci (q
0

i ), where

(q0
1
, . . . ,q0n) = argmin

q1, ...,qn

n∑
i=1

ci (qi ) (3a)

s.t.

n∑
i=1

qi = d (3b)

is the “minimal production cost” solution.

Remark 3.1. It is easy to see, by relaxing the last constraint (1d), and using constraint (1c), that the
optimal value of the optimization problem (1) is bounded below by the minimum total production cost.
Mathematically, we have

p∗ ≥ min

q1, ...,qn
p1, ...,pn

n∑
i=1

pi (qi ) ≥ min

q1, ...,qn

n∑
i=1

ci (qi ) = c∗

s.t.
n∑
i=1

qi = d s.t.
n∑
i=1

qi = d

pi (qi ) ≥ ci (qi ), i = 1, . . . ,n

In other words, the total production cost is always upper-bounded by the total payment. Therefore,
minimizing the total payment puts a cap on the total production cost as well, while the opposite is not
true in general (minimizing the total production cost can result in very high payments, which can be
seen in, e.g., the case studies in Figs. 4a and 5a).

Remark 3.2. We have imposed nearly all the desired properties as constraints in the optimization
problem (1), and it might not be clear whether this optimization problem has a solution at all. Indeed,
there always exists a class of price functions for which problem (1) has a solution, and further the
bound mentioned in Remark 3.1 is achieved.

A naive choice of price function, often referred to as dictatorial pricing, is enough to prove this claim.
In fact, one can check that for any price function of the form

pi (qi )

{
= ci (qi ) for qi = q0i
≤ ci (qi ) for qi , q0i

problem (1) has an optimal solution q∗ = q0, and achieves the bound p∗ = c∗.

While Remark 3.2 asserts the existence of an optimal price function in general, the problem may

not have a solution for certain specific classes of price functions. The key point is that problem (1)

always allows using more sophisticated price forms (e.g. piece-wise linear) for which it will have

a solution; and for any given choice of price form, it finds the best one, along with the optimal

quantities.
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Remark 3.3. While in most scenarios the operator is buying the commodity from the suppliers on
behalf of the consumers, and it makes sense to minimize the total payments

∑n
i=1 pi (qi ), in general

one may seek to balance between the consumers’ and the suppliers’ costs. In other words, one can take
the objective to be a linear combination of the consumers’ cost

∑n
i=1 pi (qi ) and the suppliers’ net cost

(negative profit)
∑n

i=1(ci (qi ) − pi (qi )). Without loss of generality, the weighted sum can be normalized
to an affine (i.e. convex) combination (1 − θ )

∑n
i=1 pi (qi ) + θ

∑n
i=1(ci (qi ) − pi (qi )) with parameter θ .

The optimization can be expressed as follows.

p∗θ = min

q1, ...,qn
p1, ...,pn ∈P

(1 − 2θ )
n∑
i=1

pi (qi ) + θ
n∑
i=1

ci (qi ) (4a)

s.t.
n∑
i=1

qi = d (4b)

pi (qi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (4c)

pi (qi ) − ci (qi ) ≥ max

q′i,qi
pi (q

′
i ) − ci (q

′
i ), i = 1, . . . ,n (4d)

For the cases when the total payment p∗ =
∑n

i=1 pi (q
∗
i ) from the optimization problem (1) matches

the lower bound c∗ =
∑n

i=1 ci (q
∗
i ) (such as in the linear+uplift example of Section 3.1.1), the solution

from (4) is the same as that of (1), and the prices will be insensitive to parameter θ .
It is worth mentioning that our algorithm proposed in Section 3.2 for solving (1) is also capable of

handling the weighted problem (4). However, for the sake of simplicity, we focus on the case of θ = 0.

To be more explicit about the class of price functions, we consider a general parametric form

for P, specified by pi (qi ) := p(qi ;α , βi ) with two types of parameters α ∈ Rl1 , and βi ∈ Rl2 for
i = 1, . . . ,n, where parameter α is shared among all the suppliers, and it constitutes the uniform

component of the price, while parameter βi is specific to supplier i . The parameters are in general

constrained to be in some bounded sets A ⊆ Rl1 and B ⊆ Rl2 , i.e., α ∈ A, and βi ∈ B for all

i = 1, . . . ,n. This parametric form is general enough that it encompasses all the assumed price

forms in the literature. In particular, the linear-plus-uplift form (pi (qi ) = λqi +ui1qi=q̂i ) is a special
case of this form, where the shared parameter is the uniform price λ, and the individual parameters

are the amount and location of the upliftsui , q̂i . Using the general parametric form, the optimization

problem (1) can be re-expressed as follows.

Parameterized Equilibrium-Constrained (EC) Pricing:

p∗ = min

q1, ...,qn
α ∈A

β1, ...,βn ∈B

n∑
i=1

p(qi ;α , βi ) (5a)

s.t.

n∑
i=1

qi = d (5b)

p(qi ;α , βi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (5c)

p(qi ;α , βi ) − ci (qi ) ≥ max

q′i,qi
p(q′i ;α , βi ) − ci (q

′
i ), i = 1, . . . ,n (5d)

To show a concrete application of this general pricing scheme, we apply our framework to the

popular class of linear-plus-uplift price functions, which has been a standard form considered in

the electricity markets literature, e.g. in [8, 10], and minimize the uplifts. We derive closed-form
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solutions for the optimal quantities and prices (for general cost functions). In this case, the total

payment matches the total cost, which is the lowest theoretically possible. In contrast, the CH and

MU pricing schemes, which are the most closely related schemes and use the same type of price

functions fail to achieve this bound and typically exhibit a large gap. IP pricing, on the other hand,

is capable of achieving the bound, but only for startup+linear cost functions, and not for more

general cost functions such as startup+convex. (See Table 1 and Section 5 for more details on the

existing schemes and their comparison with EC.)

3.1.1 Linear+Uplift Pricing. As mentioned earlier, using a linear uniform price plus an up-

lift term is a common choice of class of price functions, in practice. For this class, we have

p(qi ; λ,ui , q̂i ) = λqi + ui1qi=q̂i , where λ,u1, . . . ,un ≥ 0. Without loss of generality, we can as-

sume q̂∗i = q
∗
i , i.e., the optimal location of uplift coincides with the desired production level, which

is intuitive (See Appendix A for proof). The optimization problem (5) can then be reduced to

p∗
uplift
= min

q1, ...,qn
λ≥0

u1, ...,un ≥0

n∑
i=1

(λqi + ui ) (6a)

s.t.

n∑
i=1

qi = d (6b)

λqi + ui − ci (qi ) ≥ 0, i = 1, . . . ,n (6c)

λqi + ui − ci (qi ) ≥ max

q′i,qi
λq′i − ci (q

′
i ), i = 1, . . . ,n (6d)

Remark 3.4. From Remark 3.1, we know that p∗uplift ≥ c∗. On the other hand, plugging the feasible
point

(
qi = q

0

i ∀i, λ = 0, ui = ci (q
0

i ) ∀i
)
into (6) results in p∗uplift ≤ c∗. Therefore p∗uplift = c

∗.

Problem (6) has potentially many solutions, and the solution qi = q0i ∀i, λ = 0, ui = ci (q
0

i ) ∀i
corresponds to the naive pay-as-bid scheme, which is equivalent to having no uniform price and

paying each supplier for its own cost. To obtain price functions that are close to uniform, it is

desirable to pick a solution for which the uplifts are minimum (in ℓ1 sense, for example). That

is equivalent to adding a layer on top of the optimization problem (6) to pick the minimal-uplift

solution among all the solutions, i.e.

min

q,λ,u

n∑
i=1

ui (7a)

s.t. (q, λ,u) ∈ argmin

q,λ,u
(6a) (7b)

s.t. (6b), (6c), (6d) (7c)

where q and u denote (q1, . . . ,qn) and (u1, . . . ,un), respectively.
Let us define Λ as the set of all λ’s for which the linear price λq lies below all the cost functions,

i.e.

Λ = {λ ≥ 0 | λq ≤ ci (q), ∀q,∀i} . (8)

Figure 1 illustrates this set for an example with three non-convex costs.

The solutions to problems (6) and (7) can be found in closed-form, and the following summarizes

the results.
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Fig. 1. An illustration of the set Λ for an example with 3 non-convex cost functions. The three blue curves are
the cost functions. The (dashed and solid) red lines lie below all the cost functions and their slopes are in Λ.
The (slope of the) solid red line corresponds to the largest element of Λ.

Proposition 3.5. The set of optimal solutions of problem (6) is given by
q∗i = q

0

i , ∀i
λ∗ ∈ Λ

u∗i = ci (q
∗
i ) − λ∗q∗i , ∀i

.

Proposition 3.6. Problem (7) has a unique optimal solution as
q∗i = q

0

i , ∀i
λ∗ = max Λ

u∗i = ci (q
∗
i ) − λ∗q∗i , ∀i

.

See Appendix A for proofs.

Note that there were two potential alternatives to the two-stage optimization in (7) for picking a

minimum-uplift solution. One may have attempted to enforce uniformity as a constraint. However,

the problem with this is that imposing, e.g., box constraints on u requires knowledge of reasonable

upper-bounds on the uplifts, which may not be available; and on the other hand, insisting on exact

uniformity makes the problem infeasible in most non-convex cases. The other alternative is to

minimize a combination of the two objectives in (6) and (7). In this case, the weighted objective

becomes

∑n
i=1(λqi + γui ) for some appropriate constant γ , and it is not hard to show that the

solution will be the same as that of the proposed two-stage optimization.

3.2 An Efficient Approximation Algorithm
The optimization problem (5) defines a pricing rule that satisfies the desired properties in any

non-convex market. For specific classes of cost functions, similar to the existing approaches, one

may be able to solve this optimization problem using off-the-shelf solvers. For generic non-convex

cost functions, however, there is no existing algorithm that can solve the optimization problem

(5) to optimality. Furthermore, even finding an approximate solution, e.g., by discretizating the

variables, requires a brute-force search, which quickly becomes intractable. In this section, we

design a computationally efficient algorithm for solving the problem (5) approximately, based

on decomposing it into smaller pieces, which works for general non-convex cost functions. This

approximation algorithm can also be used to provide tractable calculations of some of the other

non-convex pricing rules such as IP pricing.

Before going through the details of the algorithm, let us define the notion of an approximate

solution to (5), which we consider. One could define an approximate solution as a value that is close

enough, in a certain sense, to the optimal solution (q∗
1
, . . . ,q∗n ,α

∗, β∗
1
, . . . , β∗n). However, no matter
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how close is that approximation to the optimal solution, that per se does not guarantee anything

about the properties that the scheme will satisfy. Instead, we define an approximate solution to (5)

as a set of quantities q1, . . . ,qn and price parameters α , β1, . . . , βn for which the Market Clearing

condition holds exactly, the Revenue Adequacy and Competitive Equilibrium conditions are relaxed

by an ϵ , and the total payment is at most nϵ away from the optimal. More formally, it is defined as

follows.

Definition 3.7. (q1, . . . ,qn ,α , β1, . . . , βn) is called an ϵ-approximate solution to (5) if it satisfies

n∑
i=1

qi = d, (Market Clearing)

p(qi ;α , βi ) − ci (qi ) + ϵ ≥ 0, i = 1, . . . ,n, (ϵ-Revenue Adequacy)

p(qi ;α , βi ) − ci (qi ) + ϵ ≥ p(q′i ;α , βi ) − ci (q
′
i ), ∀q′i , qi , i = 1, . . . ,n,

(ϵ-Competitive Equilibrium)

and

n∑
i=1

p(qi ;α , βi ) ≤ p∗ + nϵ . (ϵ-Economic Efficiency)

Given this notion of an approximate solution, we can move towards designing the algorithm. The

optimization problem (5) looks highly coupled, at first, since the constraints share a lot of common

variables. However, one can see that, for a fixed value of α , the objective becomes additively

separable in (qi , βi ). Furthermore (again for fixed α ), constraints (5c),(5d) involve only the i-th
variables (qi , βi ) for each i . Although the Market Clearing condition still couples the variables

together, this observation allows us to reformulate (5) as

p∗ = min

q1, ...,qn
α ∈A

n∑
i=1

дi (qi ;α) (9a)

s.t.

n∑
i=1

qi = d, (9b)

where

дi (q;α) = min

βi ∈B
p(q;α , βi ) (10a)

s.t. p(q;α , βi ) − ci (q) ≥ 0, (10b)

p(q;α , βi ) − ci (q) ≥ p(q′;α , βi ) − ci (q
′), ∀q′ , q, (10c)

for all i = 1, . . . ,n.
Therefore, for any fixed value of α and qi , the optimization over βi can be done individually, as

in (10). What remains to address, however, is the coupling of the variables as a result of the Market

Clearing constraint. One naive approach would be to simply try all possible choices of (q1, . . . ,qn),
and pick the one that has the minimum objective value. This is very inefficient. Instead, we take a

dynamic programming approach, and group pairs of variables together, defining a new variable as

their parent. We then group the parents together, and continue this process until we reach the root,
i.e., where there is only one node. During this procedure, at each new node i , we need to solve the

following (small) problem

дi (q;α) = min

qj ,qk
дj (qj ;α) + дk (qk ;α)

s.t. qj + qk = q,
(11)
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Fig. 2. An example of the binary tree defined by Algorithm 1 for n = 8. The faded circles correspond to the
added dummy nodes.

for every q, where j and k are the children of i . At the root of the tree we will be able to compute

дroot(d ;α). Figure 2 shows an example of the created binary tree for this procedure for n = 8. This

procedure can be repeated for different values of α , and the optimal value p∗ can be computed as

minα дroot(d ;α).
The problem with recursion (11) is that it requires an infinite-dimensional computation at every

step, since the values of дi (q;α) need to be computed for every q. To get around this issue, we note

that the variables qi live in the bounded set [0,d], and hence can be discretized to lie in a finite set

Q , such that every possible qi is at most δ (ϵ) away from some point in Q . Similarly, if the α and

βi ’s are continuous variables, we can discretize the bounded sets A and B into some finite sets A ′

and B ′
, such that every point in A (or B) is at most δ (ϵ) away, in infinity-norm sense, from some

point in A ′
(or B ′

). See Appendix B for details.

For finding an ϵ-approximate solution, (10) is relaxed to

дi (q;α) = min

βi ∈B′
p(q;α , βi ) (12a)

s.t. p(q;α , βi ) − ci (q) + ϵ ≥ 0, (12b)

p(q;α , βi ) − ci (q) + ϵ ≥ p(q′;α , βi ) − ci (q
′), ∀q′ , q, (12c)

for all i = 1, . . . ,n, and (11) remains the same, except the variables (qj ,qk ) take values in Q , i.e.

дi (q;α) = min

qj ,qk ∈Q
дj (qj ;α) + дk (qk ;α)

s.t. qj + qk = q,
(13)

for all i > n. We denote the optimizer of (12) by bi (q;α), and the optimizer of (13), which is a pair

of quantities (qj ,qk ), by xi (q;α). The full procedure is summarized in psuedocode in Algorithm 1.

While not immediately clear, the proposed approximation algorithm can be shown to run in

time that is polynomial in both n and 1/ϵ (in fact, linear in n). Further, the solution it provides

is ϵ-accurate under a mild smoothness assumption on the cost and price functions, which holds

true for almost any function considered in the literature. These two results are summarized in the

following theorem, which is proven in Appendix B.

Theorem 3.8. Consider ci (.) and p(.; .) that have at most a finite number of discontinuities and are
Lipschitz on each continuous piece of their domain. Algorithm 1 finds an ϵ-approximate solution to the
optimal pricing problem (5) with running time O

(
n(1/ϵ)l1+l2+2

)
, where n is the number of suppliers,

and l1 and l2 are the number of shared and individual parameters in the price, respectively.

It is worth emphasizing that while there are l1 + nl2 variables in the price functions in total,

parameters l1 and l2 do not scale with n, and are typically very small constants. For example, for

the so-called linear-plus-uplift price functions l1 = l2 = 1. Therefore, the algorithm is very efficient.
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Algorithm 1 Find an ϵ-approximate solution to the optimal pricing problem (5)

1: Input: n, c1(.), . . . , cn(.),p(.; .), ϵ
2: for α in A ′ do
3: S = 1 : n
4: for i in S do ▷ for the leaves
5: compute дi (q;α) for all q in Q , using (12)
6: end for
7: while |S | > 2 do ▷ while not reached the root

8: Snew = S(end) + 1 : S(end) + ⌈
|S |
2
⌉

9: for i in Snew do ▷ for the intermediate nodes

10: [j,k] = indices of children of i
11: if k = ∅ then дi (.;α) = дj (.;α)
12: else, compute дi (q;α) for all q in Q , using (13) ▷ it has two children

13: end if
14: end for
15: S = Snew
16: end while
17: [j,k] = S
18: compute дroot(d ;α), using (13) ▷ at the root
19: end for
20: α∗ = argmin

α ∈A′

дroot(d ;α)

21: q∗
root
= d

22: for i = root : −1 : n + 1 do
23: [q∗j ,q

∗
k ] = xi (q

∗
i ;α

∗), where [j,k] = indices of children of i

24: end for
25: for i = n : −1 : 1 do
26: β∗i = bi (q

∗
i ;α

∗)

27: end for
28: return (q∗

1
, . . . ,q∗n ,α

∗, β∗
1
, . . . , β∗n)

We should also remark that if one requires the total payment in Definition 3.7 to be at most ϵ
(rather than nϵ) away from the optimal p∗, the running time of our algorithm will still be polynomial

in both n and 1/ϵ , i.e., O
(
n3( 1ϵ )

l1+l2+2
)
. See the appendix for details.

4 EQUILIBRIUM-CONSTRAINED PRICING FOR NETWORKED MARKETS
We now consider the more general problem of finding an efficient pricing scheme in a networked

market. The networked market we consider has n suppliers, located at the nodes (vertices) V =
{1, . . . ,n} of a network, and connected through lines (edges) E, where, without loss of generality,
the edges are defined to be from the smaller node to the larger node (i.e. ∀(i, j) ∈ E, i < j). The i-th
supplier has a cost function ci (qi ) for producing quantity qi , which may be non-convex, as before,

and there is an inelastic demand di at each node i . The lines connecting the nodes can possibly

have certain capacities for the flows they can carry. We denote the flow of any line e = (i, j), from i

to j, by fe , and its limits (capacity) by fe and fe (the flow from j to i is −fe ).

Note that if there are multiple suppliers co-located in a market, we can simply assign them each

their own vertex, and connect them through paths with infinite capacities. In other words, a node
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with multiple suppliers can be simply replaced with a “line graph” composed of those suppliers

and infinite-capacity edges.

4.1 Pricing Formulation
A key benefit of EC pricing is the ease of generalization to the networked setting. There are

no current pricing rules that can be readily applied to the networked case. In this setting, our

Equilibrium-Constrained pricing can be formulated as the following optimization problem.

Networked Equilibrium-Constrained (EC) Pricing:

p∗ = min

q1, ...,qn
{fe }e∈E

p1, ...,pn ∈P

n∑
i=1

pi (qi ) (14a)

s.t. qi − di =
∑
j

(i, j)∈E

f(i, j) −
∑
j

(j,i)∈E

f(j,i), i = 1, . . . ,n (14b)

fe ≤ fe ≤ fe , e ∈ E (14c)

pi (qi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (14d)

pi (qi ) − ci (qi ) ≥ max

q′i,qi
pi (q

′
i ) − ci (q

′
i ), i = 1, . . . ,n (14e)

The objective is the total payment, as discussed before, and the optimization is over quantities qi ,
line flows fe , and price functions pi ∈ P. Constraint (14b) is the Market Clearing condition (or Flow

Conservation) for each individual node, i.e., the net production at each node should be equal to its

outgoing flow. Constraint (14c) enforces the line limits (Capacity Constraints). Constraints (14d)

and (14e) are Revenue Adequacy and Competitive Equilibrium, respectively, as before. The key

difference between the networked setting and the single-market one is that here theMarket Clearing

condition is spread across the network, and we have to solve the problem for the flows as well.

Remark 4.1. When the capacity constraints (14c) are relaxed (fe = −∞, fe = ∞, ∀e ∈ E), the
networked problem reduces to the single-market one. In this case, the solution to the optimization
problem (14) reduces to that of (1). That is because the only constraint involving the flows would be
(14b), and we can always finds flows that satisfy it, as long as

∑n
i=1 qi −

∑n
i=1 di = 0, which is the

conventional Market Clearing condition.

Assuming a parametric form pi (qi ) B p(qi ;α , βi ) for P, with shared parameters α and individual

parameters βi as before, the proposed pricing can be expressed as follows.
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Parameterized Networked Equilibrium-Constrained (EC) Pricing:

p∗ = min

q1, ...,qn
{fe }e∈E
α ∈A

β1, ...,βn ∈B

n∑
i=1

p(qi ;α , βi ) (15a)

s.t. qi − di =
∑
j

(i, j)∈E

f(i, j) −
∑
j

(j,i)∈E

f(j,i), i = 1, . . . ,n (15b)

fe ≤ fe ≤ fe , e ∈ E (15c)

p(qi ;α , βi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (15d)

p(qi ;α , βi ) − ci (qi ) ≥ max

q′i,qi
p(q′i ;α , βi ) − ci (q

′
i ), i = 1, . . . ,n (15e)

4.2 An Efficient Approximation Algorithm
For certain classes of non-convexities, the optimization problem (15) can still be solved using

off-the-shelf solvers, similar to those used in the other methods for the no-network case. However,

those algorithms cannot handle more general classes of non-convexities. In this section, we develop

a computationally efficient approximation algorithm for general non-convex costs, for a special

class of networks.

A special yet important class of networks are acyclic networks, which are a typical topology in

many markets, including electricity distribution networks. Acyclic networks have a tree topology
(they do not have cycles), which allows us to devise an efficient algorithm for them. In the remainder

of this section, we limit our attention to these networks. The main ideas extend directly to more

general networks, as long as there are not “too many cycles” in the network in some sense (i.e.

bounded tree-width networks). We have focused on the acyclic case due to space constraints.

Without loss of generality, let us denote the first node as the root of the tree, and nodes with

only one neighbor as the leaves. Every node (except the root) has a unique parent, defined as the

first node on the unique path connecting it to the root node. The set of nodes that have a given

node i as their parent is said to be node i’s children. It can be shown that any tree with arbitrary

degree can be transformed into a binary tree, i.e., a tree where each node has a unique parent and

at most 2 children, with O(n) nodes (See the appendix). Thus, we can focus on binary trees.

For a node i , let ch1(i), ch2(i) denote its children (ch1(i) = ∅ and/or ch2(i) = ∅ when i has less
than two children). The problem can then be written as

p∗ = min

q1, ...,qn
f1, ...,fn
α ∈A

β1, ...,βn ∈B

n∑
i=1

p(qi ;α , βi ) (16a)

s.t. qi − di = fch1(i) + fch2(i) − fi , i = 1, . . . ,n (16b)

fi ≤ fi ≤ fi , i = 1, . . . ,n (16c)

p(qi ;α , βi ) − ci (qi ) ≥ 0, i = 1, . . . ,n (16d)

p(qi ;α , βi ) − ci (qi ) ≥ max

q′i,qi
p(q′i ;α , βi ) − ci (q

′
i ), i = 1, . . . ,n (16e)

where fi represents the incoming flow to each node i from its parent, and froot = froot = 0.
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Similarly as in the single-market case, we define an ϵ-approximate solution to this problem.

Definition 4.2. (q1, . . . ,qn , f1, . . . , fn ,α , β1, . . . , βn) is called an ϵ-approximate solution to (16) if

it satisfies

|qi − di − fch1(i) − fch2(i) + fi | ≤ ϵ, i = 1, . . . ,n, (ϵ-Load Balancing)

fi ≤ fi ≤ fi , i = 1, . . . ,n, (Flow Limit)

p(qi ;α , βi ) − ci (qi ) + ϵ ≥ 0, i = 1, . . . ,n, (ϵ-Revenue Adequacy)

p(qi ;α , βi ) − ci (qi ) + ϵ ≥ p(q′i ;α , βi ) − ci (q
′
i ), ∀q′i , qi , i = 1, . . . ,n,

(ϵ-Competitive Equilibrium)

n∑
i=1

p(qi ;α , βi ) ≤ p∗ + nϵ . (ϵ-Economic Efficiency)

The main difference from the definition in the single-market case is that the Market Clearing

condition has been replaced with ϵ-Load Balancing and exact Flow Limit conditions here.

Note that the minimization over the variables βi in problem (16) can be done “internally,” and

the problem can be re-expressed as

p∗ = min

q1, ...,qn
f1, ...,fn
α ∈A

n∑
i=1

дi (qi ;α) (17a)

s.t. qi − di = fch1(i) + fch2(i) − fi , i = 1, . . . ,n (17b)

fi ≤ fi ≤ fi , i = 1, . . . ,n (17c)

where

дi (q;α) = min

βi ∈B
p(q;α , βi ) (18a)

s.t. p(q;α , βi ) − ci (q) ≥ 0, (18b)

p(q;α , βi ) − ci (q) ≥ p(q′;α , βi ) − ci (q
′), ∀q′ , q, (18c)

for all i = 1, . . . ,n.
The key insight is that the tree structure of the constraints (17b), allows us to write the optimiza-

tion problem in a recursive form as follows.

p∗ = min

α
hroot(0;α) (19)

where

hi (fi ;α) = min

qi ,fch
1
(i ),fch

2
(i )

дi (qi ;α) + hch1(i)(fch1(i);α) + hch2(i)(fch2(i);α) (20a)

s.t. qi − di = fch1(i) + fch2(i) − fi (20b)

fch1(i) ≤ fch1(i) ≤ fch1(i) (20c)

fch2(i) ≤ fch2(i) ≤ fch2(i) (20d)

for all i = 1, . . . ,n.
Now, this recursive form is amenable to dynamic programming. However, since the variables are

continuous, each step still requires an infinite-dimensional search. In order to tackle this issue, we
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Algorithm 2 Find an ϵ-approximate solution to the optimal networked pricing problem (16)

1: Input: G=(V,E), c1(.), . . . , cn(.),p(.; .), ϵ
2: for α in A ′ do
3: for all nodes i do
4: compute дi (qi ;α) for all qi in Qi , using (22)

5: end for
6: for all nodes i ,root (in bottom-up order) do
7: compute hi (f ;α) for all f in Fi , using (21)

8: end for
9: compute hroot(0;α), using (21)
10: end for
11: α∗ = argmin

α ∈A′

hroot(0;α)

12: f ∗
root
= 0

13: for all nodes i (in top-down order) do
14: [q∗i , f

∗
ch1(i)
, f ∗

ch2(i)
] = yi (f

∗
i ;α

∗)

15: β∗i = bi (q
∗
i ;α

∗)

16: end for
17: return (q∗

1
, . . . ,q∗n , f

∗
1
, . . . , f ∗n ,α

∗, β∗
1
, . . . , β∗n)

can discretize the variables and solve the following approximate versions.

hi (fi ;α) = min

qi ∈Qi

f
ch
1
(i )∈Fch

1
(i )

f
ch
2
(i )∈Fch

2
(i )

дi (qi ;α) + hch1(i)(fch1(i);α) + hch2(i)(fch2(i);α) (21a)

s.t. |qi − di − fch1(i) − fch2(i) + fi | ≤ ϵ (21b)

for all i = 1, . . . ,n, where Q1, . . . ,Qn and F1, . . . , Fn are properly-defined discrete sets (See the

appendix for details). We denote the optimizer (triple) of (21) by yi (fi ;α).

дi (q;α) = min

βi ∈B′
p(q;α , βi ) (22a)

s.t. p(q;α , βi ) − ci (q) + ϵ ≥ 0, (22b)

p(q;α , βi ) − ci (q) + ϵ ≥ p(q′;α , βi ) − ci (q
′), ∀q′ , q, (22c)

for all i = 1, . . . ,n. The optimizer of (22) is denoted by bi (q;α).
The steps of the procedure are summarized in psuedocode in Algorithm 2, and the following

result summarizes the theoretical guarantee of the algorithm.

Theorem 4.3. Consider ci (.) and p(.; .) that have at most a finite number of discontinuities and are
Lipschitz on each continuous piece of their domain. Algorithm 2 finds an ϵ-approximate solution to
the optimal networked pricing problem (16), with running timeO

(
n(1/ϵ)l1+max{l2,1}+2

)
, where n is the

number of suppliers, and l1 and l2 are the number of shared and individual parameters in the price,
respectively.

It is worth mentioning that the network algorithm developed in this section suggests another

way of solving the no-network case as well, by replacing the single market with a line graph with

infinite capacities. This algorithm will in turn have time complexity O
(
n( 1ϵ )

l1+l2+2
)
, which is the

same as that of the one developed in Section 3.2.
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5 EXISTING PRICING SCHEMES
In this section, we review the existing pricing schemes in the literature and summarize their

properties. No prior pricing rule for general non-convexmarkets satisfies all the properties discussed

in Section 2.2. However, it is possible to achieve all the properties in the case when the cost functions

are convex via a classical approach: shadow pricing. We first briefly illustrate how shadow pricing

works for the convex case, and then survey some prominent approaches in the literature that seek

to extend the properties of shadow pricing to the non-convex case, contrasting them with the EC

scheme.

5.1 Pricing in Convex Markets
When the cost functions ci (.) are convex, a simple and uniform pricing rule, often referred to as

shadow pricing or marginal-cost pricing [3, 19], can achieve all the above-mentioned properties.

The pricing scheme works as follows. The operator first solves the convex program

min

q1, ...,qn

n∑
i=1

ci (qi ) (23a)

s.t.

n∑
i=1

qi = d (λ) (23b)

where λ is the dual variable corresponding to the load-balance constraint. Let q∗
1
, . . . ,q∗n and λ∗

denote an optimal primal-dual pair of this problem (if there are multiple dual solutions, take λ∗ to
be the smallest). A payment function of the form

pi (qi ) = λ∗qi i = 1, . . . ,n (24)

satisfies all the properties outlined in Section 2.2, and it is relatively straightforward to see that.

For simplicity assume that ci (.) are differentiable. The optimal solution of (23) satisfies the

following (KKT) conditions (which does not require convexity):{∑n
i=1 q

∗
i = d

dci
dqi

(q∗i ) = λ∗, i = 1, . . . ,n

Next, note that supplier i’s profit-maximization problem is

max

qi
λ∗qi − ci (qi ).

Since ci (.) is convex, the objective is concave and any point at which the derivative is zero, is a

global maximizer. In particular, the derivative at q∗i is zero, because of the KKT conditions, and

therefore that is a solution to the supplier i’s profit-maximization problem. As a result, the scheme

supports a competitive equilibrium that clears the market and minimizes the production cost, while

using a price form that is simple and uniform. Figure 3 illustrates the optimal quantities and the

price function for an example with three suppliers.

Note that the total payment of this scheme is

∑n
i=1 pi (q

∗
i ) = λ∗d , which can be generally higher

than

∑n
i=1 ci (q

∗
i ). One can always opt for a non-uniform affine price function aspi (qi ) = λ∗qi+bi , with

bi = ci (q
∗
i ) − λ∗q∗i , which has lower payments, and makes

∑n
i=1 pi (q

∗
i ) exactly equal to

∑n
i=1 ci (q

∗
i ).

However, if one requires a uniform and linear price function, it can be shown that pi (qi ) = λ∗qi has
the lowest total payment among all such functions.
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Fig. 3. An illustration of shadow pricing for the case of 3 convex cost functions. The points indicated by ∗

show the optimal quantities. The 3 functions have the same derivative at their optimal quantities, and the
tangent line lies below the function (because of convexity). The red (solid) line that passes through the origin
is the uniform price function, which is parallel to the three lines.

5.2 Pricing in Non-Convex Markets
If the cost functions are non-convex, the approach of shadow pricing, described above, fails. This is

because the net profit of each supplier is no longer a concave function, and its stationary points do

not necessarily correspond to the maximum. In other words, there may not be a subderivative at q∗i
supporting the cost function ci (.).
There have been several schemes proposed in the literature that attempt to address this issue

and design pricing rules that satisfy the properties discussed above in the context of non-convex

cost functions. We review the most promising ones here. Some of the schemes maintain a uniform

pricing rule with additional discriminatory side-payments called “uplifts” for incentivizing the

suppliers to follow the dispatch, while others raise the uniform price so that it is revenue-adequate.

A summary of the pricing schemes, along with their properties, is provided in Table 1.

Integer Programming (IP). O’Neill et al. [14] proposed a pricing scheme for non-convex cost functions

that are in the form of a fixed (start-up) cost plus a linear marginal cost, sometimes referred to as “IP

pricing.” This scheme uses uniform marginal pricing for the commodity and discriminatory pricing

for the integral activity of the suppliers. It is based on (i) formulating an optimization similar to (23),

as a mixed integer linear program (MILP) and solving it for optimal allocations, (ii) reformulating

the original MILP as an LP by replacing the integral constraints with forcing commitment choices

equal to their optimal values, and (iii) solving the LP problem and using the dual variable λ of

Market Clearing constraint as the uniform price and the dual variables {u∗i } of the forced equality

constraints as discriminatory uplifts: pi (qi ) = λ∗qi + u
∗
i 1 {qi > 0}.

IP pricing uses a uniform price plus a discriminatory uplift to clear the market efficiently such

that every supplier’s net profit is zero. As a result, both total payments and total production costs

are minimized at the same time. It was shown that the optimal solutions generated by IP pricing are

optimal to the decentralized profit maximization problems for every supplier and thus they support

a competitive equilibrium. However, IP pricing assumes knowledge of the optimal solutions to

the unit commitment problem and thus is not intended as a practical approach to find the optimal

allocation. Hogan and Ring [10] pointed out that uniform price generated under IP pricing can be

volatile (i.e. a small change in demand could lead to a big change in the uniform price) and uplifts

could be generally very large.
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Table 1. Summary of common pricing schemes and their properties. IP: Integer Programming. MU: Minimum
Uplift. CH: Convex Hull. SLR: Semi-Lagrangean Relaxation. PD: Primal-Dual. EC: Equilibrium-Constrained

Scheme\
Property

Price form

pi (qi ) =
Proposed for

ci (qi ) =
Market

Clearing

Revenue

Adequate

Supports

Competitive

Equilibrium

Economically

Efficient

Shadow

Pricing

λqi Convex ✓ ✓ ✓ ✓

IP λqi + ui1qi>0 Startup+linear ✓ ✓ ✓ ✓

MU/CH λqi + ui1qi=q∗
i

Startup+convex ✓ ✓ ✓ ✕

SLR λqi Startup+linear ✓ ✓ ✕ ✕

PD λqi Startup+linear ✓ ✓ ✕ ✕

EC

(proposed)

User-specified General ✓ ✓ ✓ ✓

The results in this table demonstrate the economic properties of the formulations, aside from the computational aspect of

solving them. In practice, all these schemes rely on numerical solvers for solving their problems, and if the problem is

non-convex (which is the case for all the schemes except shadow pricing), there is no guarantee of obtaining these

properties. However, as discussed in Section 3.2, the EC scheme has the additional benefit that it is accompanied by an

efficient algorithm for solving the non-convex problem with an ϵ -approximation guarantee.

Minimum Uplift (MU) / Convex Hull (CH). To avoid the unwanted properties of IP pricing (i.e.

volatility and instability), a pricing scheme, proposed in [10] for the (non-convex) class of startup-

plus-convex cost functions, offers minimum uplifts that incentivize each supplier to follow the

dispatch rather than maximize their own profits in the absence of uplifts. The scheme is based

on solving the mixed-integer program minimizing the total production cost and minimizing total

uplifts. Given a fixed uniform price λ, each supplier chooses between following the dispatch to

receive the uplifts or not. The uplifts can be viewed as the extra potential profit that the suppliers

can make by self-scheduling and maximizing their own profit. Gribik et al. [8] refined the MU

pricing and proposed the concept of Convex Hull pricing, which is based on (i) replacing the

non-convex cost of the original program with its convex hull to formulate a new LP, (ii) solving the

new LP and using the dual variable of Market Clearing constraint as the marginal price and deriving

the lost opportunity cost (LOC) as the minimum uplifts to incentivize suppliers’ compliance. The

final payment pi (qi , zi ) as a function of quantity qi and commitment choice zi is in the form of a

uniform price λ∗ and a discriminatory uplift u∗i as pi (qi ) = λ∗qi + u
∗
i 1

{
qi = q

∗
i

}
.

Even though MU/CH pricing minimizes total uplifts, the generated marginal price might end

up being high, and the payments can be much higher than those of the other schemes. In general,

the total payments under this scheme might end up being much higher than the total production

costs, which defeats the purpose of minimizing the costs. Even for the class of startup-plus-linear

cost functions, where IP pricing is optimal (the total payment is equal to the total production cost,

and they are both minimal), MU pricing is not economically efficient, as it fails to minimize the

payments.

On the computational side, although [11] propose a polynomially-solvable primal formulation

for the Lagrangian dual problem by explicitly describing the convex hull for piecewise linear or

quadratic cost functions, describing the convex hull of cost functions could be very challenging in

general and thus makes the problem computationally intractable.
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As an aside, MU and CH would not be equivalent if the Market Clearing constraint was an

inequality. In that case, the side-payments in CH would be typically larger than those in MU, due

to Product Revenue Shortfall [18].

Semi-Lagrangean Relaxation (SLR). Araoz and Jörnsten [1] introduced a semi-Lagrangean relaxation

approach to find a uniform price that is revenue-adequate at the same solution for quantity and

commitment choices as the original optimization problem, for cost functions of startup-plus-linear

form. The scheme is based on formulating and solving the SLR of mixed-integer program (MIP) by

semi-relaxing the Market Clearing constraint with standard Lagrange multiplier λ. The solution
under SLR satisfies the constraints in the original MIP and makes the duality gap between MILP and

SLR zero. Though the payment function pi (qi ) = λ∗qi under SLR pricing is high enough to avoid

negative profits for suppliers, it incentivizes the suppliers to deviate and operate at full capacity

and total payments usually end up being much higher than total costs of production.

Primal-Dual (PD). Another revenue-adequate pricing scheme, proposed by [15], exploits a primal-

dual approach to derive a uniform price to guarantee that dispatched suppliers are willing to remain

in the market (revenue adequacy). The scheme works for cost functions with the form of start-up

cost plus linear cost, and the prices have shown not to deviate much from that of [14]. The approach

is based on (i) relaxing the integral constraint of the original MILP to formulate a primal LP problem,

(ii) deriving the dual LP problem of the primal LP problem, (iii) formulating a new LP problem that

seeks to minimize the duality gap between the primal and dual problems subject to both primal and

dual constraints and (iv) adding back the integral constraints as well as nonlinear constraints to

ensure that no supplier incurs loss and solving the new problem for optimal solutions q∗i , z
∗
i and λ

∗
.

Though this scheme may be implemented using standard branch-and-cut solvers, it is compu-

tationally intractable in general. The prices pi (qi ) = λ∗qi and profits produced under PD do not

significantly deviate from dual prices if integral constraints are relaxed and thus are always bounded.

However, as a revenue-adequate pricing scheme, PD fails to form a competitive equilibrium as

suppliers are incentivized to operate at full capacity. In general, total payments are much higher

than total production costs.

6 EXPERIMENTAL RESULTS
In this section, we compare and contrast EC pricing with the existing approaches using numerical

experiments on common case studies. Specifically, we compare the payments and uplifts generated

from different pricing schemes, including IP, CH, SLR, PD and EC. Among all these schemes, only

EC allows flexibility of the payment form. As a result, we further divide EC into one with a payment

function in the form of linear marginal price plus uplifts and another pricing with a payment form

of piecewise linear marginal prices plus uplifts. In practice, specific limits on the number of sections

and the maximum slope among all sections can be used to further restrict EC. For convenience, we

name these variations of EC in terms of number of piecewise sections of its payment form, e.g. EC2

refers to EC with a payment function in the form of 2 piecewise sections plus uplifts.

First, we apply all these pricing schemes to a single market example from [10], which is a

modification of Scarf’s example developed in [17]. Second, we adapt cost functions in the modified

Scarf’s example to be quadratic plus startup cost in order to further explore how these schemes

generalize to different cost functions. Finally, we consider a further generalization to a simple

2-node networked market.
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6.1 Case 1: Linear plus startup cost

Table 2. Summary of the production characteristics in the modified Scarf’s example.

Type Smokestack High Tech Med Tech

Capacity 16 7 6

Minimum output 0 0 2

Startup cost 53 30 0

Marginal cost 3 2 7

Quantity 6 5 5

We consider a modified Scarf’s example, as proposed in [10]. The parameters are listed in Table 2.

We assume that demand is inelastic with a maximum capacity of 161 units. We restrict the payment

function of EC1, EC2, EC3 and EC4 to respectively have one, two, three and four sections and

impose that the marginal price of any section cannot exceed the maximum marginal price for any

supplier operating at full capacity. Figure 4a shows total payments for different demand levels while

Figure 4c shows the corresponding uplifts of the pricing schemes that apply, i.e. CH, EC1, EC2, EC3

and EC4. Payments of two revenue-adequate pricing schemes, including SLR and PD, are higher

than total costs in general. IP, EC1, EC2, EC3 and EC4 achieve the minimum payments equal to total

costs. CH achieves the minimum payments at low demand levels and its total payments surpass

total costs as demand gets high. As for uplifts, EC4 achieves the smallest among the five pricing

schemes. Total uplifts of CH and EC1 are close to each other at a low demand level and that of EC1

increases significantly when demand approaches capacity. This is not surprising as total payments

of CH go above total costs at a high demand, making it possible for relatively smaller total uplifts.

It is worth noting that startup prices and marginal prices for IP are volatile and unstable. Figure 4d

and 4e demonstrate that the more complex we allow payment functions of EC family, the smaller

total uplifts we can achieve, which means more uniform prices are across suppliers. In practice,

there is apparently a trade-off between complexity and uniformity of payment functions among

the EC family, and this will be a design choice for the independent system operator (ISO). Overall,

EC4 outperforms other pricing schemes in terms of total payments and total uplifts.
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(a) Total payments as a function of demand (b) Payment difference in percentage w.r.t

cost as a function of demand

(c) Total uplifts as a function of demand

(d) Total uplifts as a function of demand (e) Total uplifts for pricing schemes at dif-

ferent demand levels

Fig. 4. An example with cost functions of the form of linear plus startup cost

6.2 Case 2:Quadratic plus startup cost

Table 3. Summary of the new cost functions in the modified Scarf’s example.

Type Smokestack High Tech Med Tech

Cost function
3

16
q2 + 53 ∗ 1 {q > 0} 2

7
q2 + 30 ∗ 1 {q > 0} 7

6
q2
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(a) Total payments as a function of demand (b) Payment difference in percentage w.r.t

cost as a function of demand

(c) Total uplifts as a function of demand

(d) Total uplifts as a function of demand (e) Total uplifts for pricing schemes at dif-

ferent demand levels

Fig. 5. An example with cost functions of the form of quadratic plus startup cost

To further explore how these pricing schemes generalize to different cost functions, we modify the

cost functions of the example above. Table 3 describes the new cost functions for each supplier.

Since it is not clear how to generalize SLR and PD, we focus on a comparison among IP, CH, EC1,

EC2, EC3 and EC4. We restrict the payment function of EC1, EC2, EC3 and EC4 to respectively have

one, two, three and four sections with the marginal price of any section bounded by the maximum

of marginal price for any supplier operating at full capacity. As can be seen in Figure 5a, EC1 EC2,

EC3 and EC4 achieve the possible minimum total payments equal to total costs. Total payments

of IP and CH are both above total costs and the gap between total payments and costs grows as

demand increases. Observe that the demand here ranges from 1 to 160 because marginal price of

CH increases dramatically at the capacity level and the plot over the interval (1, 160) would be a

flat line if the whole range were covered. Figure 5c shows that total uplifts of EC1 are much larger

than that of CH and EC2. At a low demand level, uplifts of EC1 and EC2 are close to each other. As

demand increases, uplifts of EC2 are a little larger than those of CH, in order to maintain a smaller

overall payment. There is a trade-off between minimizing total payments and minimizing total

costs. Allowing the flexibility of payment function form enables EC2 to perform better than either

CH or EC1 in terms of total payments and uplifts. Figure 5d and 5e show a relationship between

complexity of payment function form and magnitude of total uplifts among the EC family pricing

schemes. As in the case of cost function being start-up plus linear cost, it is not surprising to see

that more complex payment functions tend to allow smaller total uplifts, i.e. more uniform prices

across suppliers.

6.3 A Networked Market with Capacity Constraints
One advantage EC has over all the other pricing schemes is its generality. Specifically, EC can be

applied to networked markets. In this section, we divide a single market with a fixed total demand
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Fig. 6. A schematic drawing for two connected markets with a constraint on flow
capacity

60 as described earlier into one market with only med tech suppliers and the other one with the

smokestack and high tech suppliers. The cost functions of the suppliers are the same as defined

earlier, i.e. linear plus startup cost. As pictured in Figure 6, these two markets are connected via

a flow capacity constraint. We consider two different cases of non-uniform marginal pricing and

uniform marginal pricing for these two markets. Figure 7 shows how total payments, total uplifts

and flow between these two connected markets vary as flow capacity increases for nonuniform

and uniform marginal pricing settings. The results show that the total payments and total uplifts

decrease as more flow is allowed between these two markets until it reaches the demand of one

market, which means one market alone meets the total demand. Allowing non-uniform pricing

does not further reduce total payments as total payments are minimal and equal the total costs.

However, it helps reduce total uplifts, as we can see in Figure 7b.

(a) Total payments as a function of flow ca-

pacity

(b) Total uplifts as a function of flow capac-

ity

(c) Flow between two markets as a function

of flow capacity

Fig. 7. An example of two connected markets with a constraint on the flow capacity

7 CONCLUDING REMARKS
We study the problem of pricing in single and networked markets with non-convex costs. Our

key contribution is the proposal of a novel scheme, Equilibrium-Constrained (EC) pricing, which

optimizes for the allocations and the price parameters at the same time, while imposing the

equilibrium conditions as constraints. Our pricing framework is general in the sense that: (i) it can

be used for pricing general non-convex cost functions, (ii) it allows for using general price classes,

(iii) can be computed in polynomial-time regardless of the source of the non-convexities, and (iv) it

extends easily to networked markets.

This paper opens up a variety of important directions for future work. First, as this framework

enables one to use general price classes, it would be interesting to apply it to specific classes of price

functions (e.g. quadratic plus uplift, piece-wise, etc.) and characterize the solution theoretically

and/or numerically. One can then investigate the potential trade-offs between the complexity of the

class and the economic efficiency or the uniformity of the price. Second, since electricity markets are
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an important application of the pricing problem studied here, it would be interesting to evaluate the

proposed scheme in practical settings for electricity markets. Our preliminary exploration shows

that we can achieve more efficient (lower total payments) and less discriminatory (lower uplifts)

prices with, for instance, piece-wise linear functions. More evaluations in large-scale, practical

settings should be carried out in order to evaluate the potential of deployment. Another important

direction to pursue is the extension of our results to networked markets with more general network

structures. Our algorithm currently applies to networks with bounded tree-width; however beyond

such networks new ideas are needed. Finally, our proposed pricing scheme has broader implications

for non-convex optimization problems as well. In the convex setting, dual prices are crucial for the

development of distributed optimization algorithms, but such approaches have not been possible

in non-convex settings due to the lack of pricing rules with the desirable properties laid out in

Section 2.2. It is now possible to explore whether EC prices can be used as the basis for distributed

optimization algorithms in the non-convex setting.
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A PROOFS OF THE STATEMENTS IN SECTION 3.1
In this section, we formally prove the reduction of the optimization problem for the class of

linear-plus-uplift functions to (6), and then show Propositions 3.5 and 3.6.

A.1 Reduction
Here we show that for the class of linear-plus-uplift price functions p(qi ; λ,ui , q̂i ) = λqi +ui1qi=q̂i ,
one can assume q̂∗i = q∗i without loss of generality, and therefore the optimization problem (5)

reduces to (6) for this class. The optimization problem (5) for price function p(qi ; λ,ui , q̂i ) =
λqi + ui1qi=q̂i , λ,u1, . . . ,un ≥ 0, is as follows

p∗
uplift
= min

q1, ...,qn
λ≥0

u1, ...,un ≥0
q̂1, ...,q̂n

n∑
i=1

(λqi + ui1qi=q̂i ) (25a)

s.t.

n∑
i=1

qi = d (25b)

λqi + ui1qi=q̂i − ci (qi ) ≥ 0, i = 1, . . . ,n (25c)

λqi + ui1qi=q̂i − ci (qi ) ≥ max

q′i,qi
λq′i + ui1q′i=q̂i − ci (q

′
i ), i = 1, . . . ,n (25d)

The following lemma shows that this optimization problem can be reduced to (6), and the optimal

uplifts of (6) are no larger than those of (25).

Lemma A.1. Given any solution (q∗, λ∗,u∗, q̂∗) to the optimization problem (25), (q∗, λ∗,u,q∗) is
also a solution, where

ui =

{
u∗i , if q̂∗i = q

∗
i

0, o.w.
.

Proof. Proof of Lemma A.1. Let us first show the feasibility of (q∗, λ∗,u,q∗). For any i such that

q̂∗i , q
∗
i , we have that

λ∗q∗i − ci (q
∗
i ) ≥ 0

λ∗q∗i − ci (q
∗
i ) ≥ max

q′i,q
∗
i

λ∗q′i + u
∗
i 1q′i=q̂

∗
i
− ci (q

′
i ) ≥ max

q′i,q
∗
i

λ∗q′i − ci (q
′
i ),

which implies

λ∗q∗i + u
∗
i1q∗

i=q
∗
i
− ci (q

∗
i ) ≥ 0

λ∗q∗i + u
∗
i1q∗

i=q
∗
i
− ci (q

∗
i ) ≥ max

q′i,q
∗
i

λ∗q′i + u
∗
i1q′i=q̂

∗
i
− ci (q

′
i ),

because u∗i = 0. Therefore (q∗, λ∗,u,q∗) is feasible.
The objective value of (q∗, λ∗,u,q∗) is

n∑
i=1

(λ∗q∗i + ui ) =
∑

i :q̂∗
i=q

∗
i

(λ∗q∗i + u
∗
i ) +

∑
i :q̂∗

i,q
∗
i

λ∗q∗i

=

n∑
i=1

(λ∗q∗i + u
∗
i 1q∗

i=q̂
∗
i
),

which is the same as that of (q∗, λ∗,u∗, q̂∗), and is therefore optimal. □

Based on this lemma, the optimization problem (25) can be reduced to (6).
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A.2 Closed-Form Solutions
Proof. Proof of Proposition 3.5. In the optimization problem (6), the order of variables in the

minimizations does not matter, and further, for every fixed q1, . . . ,qn and λ, the minimization over

each ui can be done separately. Therefore this program can be massaged into the following form

p∗
uplift
= min

q1, ...,qn

(
min

λ≥0

n∑
i=1

дi (qi ; λ)

)
(26a)

s.t.

n∑
i=1

qi = d, (26b)

where

дi (qi ; λ) = min

ui ≥0
λqi + ui (27a)

s.t. λqi + ui − ci (qi ) ≥ 0, (27b)

λqi + ui − ci (qi ) ≥ max

q′i,qi
λq′i − ci (q

′
i ). (27c)

for all i = 1, . . . ,n. Constraints (27b) and (27c) can be expressed as

λqi + ui ≥ ci (qi ),

λqi + ui ≥ ci (qi ) + max

q′i,qi
λq′i − ci (q

′
i ).

It follows that

дi (qi ; λ) = λqi + u
∗
i = ci (qi ) +max

{
0, max

q′i,qi
λq′i − ci (q

′
i )

}
.

which is, of course, a function of λ and qi . Therefore we have

min

λ≥0

n∑
i=1

дi (qi ; λ) =
n∑
i=1

ci (qi )

and the minimizers λ∗ are all values λ for which max

q′i,qi
λq′i − ci (q

′
i ) ≤ 0, which are exactly the

elements of Λ = {λ ≥ 0 | λq ≤ ci (q), ∀q,∀i} (Figure 1 provides a pictorial description of these

values). Finally we have the last minimization, which is

min

q1, ...,qn

n∑
i=1

ci (qi ) (28a)

s.t.

n∑
i=1

qi = d (28b)

and therefore has q∗i = q
0

i ∀i as its optimizer. We also have u∗i = ci (q
∗
i ) − λ∗q∗i , ∀i . □

Proof. Proof of Proposition 3.6. The steps of the proof are exactly the same as in the previous

one, except that the additional minimizer picks the λ with the smallest total uplift

∑n
i=1 ui (λ), which

corresponds to the largest element of Λ. □

B PROOFS OF THE STATEMENTS IN SECTION 3.2
In this section, we prove Theorem 3.8, in two parts. First, we show that there exist finite sets

Q,A ′,B ′
for which Algorithm 1 finds an ϵ-approximate solution, and we quantify the sizes of

these sets as a function of ϵ . In the second part, we analyze the running time of Algorithm 1.
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B.1 ϵ-Accuracy
Let us first state a simple but useful lemma.

Lemma B.1 (δ -discretization). Given a set C ⊆ [L1,L1] × · · · × [Lk ,Lk ], for any δ > 0, there
exists a finite set C′ such that

∀z ∈ C, ∃z ′ ∈ C′ s.t. ∥z − z ′∥∞ ≤ δ ,

and further C′ contains at most V /δk points, where V =
∏k

i=1(Li − Li ) is a constant (the volume of
the box). C′ is said to be a δ -discretization of C.

Let Q , A ′
and B ′

denote some δ -discretizations of sets [0,d], A and B, respectively. In other

words, for every q ∈ [0,d], α ∈ A, and β ∈ B, there exist q′ ∈ Q , α ′ ∈ A ′
, and β ′ ∈ B ′

, such that

|q − q′ | ≤ δ , ∥α − α ′∥∞ ≤ δ , and ∥β − β ′∥∞ ≤ δ . We can combine all these inequalities as

∥(q,α , β) − (q′,α ′, β ′)∥∞ ≤ δ .

On the other hand, given that the cost function ci (.) for each i is Lipschitz on each continuous

piece of its domain, there exists a positive constant Ki such that |ci (q) − ci (q
′)| ≤ Ki |q − q′ |, which

implies

|ci (q) − ci (q
′)| ≤ Kiδ . (29)

Similarly, Lipschitz continuity of p(.; .) implies existence of a positive constant K such that

|p(q,α , β) − p(q′,α ′, β ′)| ≤ K ∥(q,α , β) − (q′,α ′, β ′)∥∞, which yields

|p(q,α , β) − p(q′,α ′, β ′)| ≤ Kδ . (30)

Using Eqs. (29),(30), we can see that for any solution q∗
1
, . . . ,q∗n ,α

∗, β∗
1
, . . . , β∗n to optimization (5),

there exists a point q1, . . . ,qn ,α , β1, . . . , βn with q1, . . . ,qn ∈ Q , α ∈ A ′
and β ∈ B ′

, for which

constraints (5c) and (5d) are violated at most by (K + Ki )δ and (2K + 2Ki )δ , respectively, and the

objective is larger than p∗ at most by nKδ . As a result, this point will be an ϵ-approximate solution

if

(K + Ki )δ ≤ ϵ ∀i, (31)

2(K + Ki )δ ≤ ϵ ∀i, (32)

nKδ ≤ nϵ . (33)

These constraints altogether enforce an upper bound on the value of δ as

δ ≤ Cϵ,

for some constant C . Therefore if we pick

δ =
d⌈ d
Cϵ

⌉ , (34)

our algorithm is guaranteed to encounter an ϵ-approximate solution while enumerating the points,

and Q = {0,δ , 2δ , . . . ,d} is a valid δ -discretization for [0,d], which has Nq =

⌈
d

Cϵ

⌉
+ 1 = O

(
1

ϵ

)
points. The nice thing about this particular choice of δ is that now d can be written as a sum of n
elements in Q (because all the elements, including d , are multiples of δ ), which allows us to satisfy

the Market Clearing condition exactly. Based on Lemma (B.1), A ′
and B ′

contain Nα = O

(
1

δ l1

)
=

O

(
1

ϵ l1

)
and Nβ = O

(
1

δ l2

)
= O

(
1

ϵ l2

)
points.
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Finally, if there are any discontinuities in the cost or price functions, we can simply add them

to our discrete sets Q , A ′
and B ′

, and since there are at most a finite number of them, the sizes

of the sets remain in the same order, i.e., Nq = O

(
1

ϵ

)
, Nα = O

(
1

ϵ l1

)
and Nβ = O

(
1

ϵ l2

)
. Next, we

calculate the time complexity of Algorithm 1 running on these discrete sets.

B.2 Run-Time Analysis
In this section, we show that Algorithm 1 has a time complexity of O

(
n( 1ϵ )

l1+l2+2
)
. For every fixed

α , we have the following computations

(1) The leaves: We need to compute дi (q;α) for every i and every q ∈ Q . Computing each дi (q;α)
(i.e. for fixed i,q,α ) takes O(NβNq). The reason for that is we have to search over all βi ∈ B′

,

and for each one there are Nq + 1 constraints to check. More explicitly, we need to (a) check

O(NβNq) constraints, (b) compute Nβ objectives, and (c) find the minimum among those

Nβ values. All these steps together take O(NβNq), and repeating for every i and q makes it

O(nNβN
2

q ).

(2) The intermediate nodes: In each new level, there are at most half as many (+1) nodes as

in the previous level. For each node i in this level, we need to compute дi (q;α) for every
q ∈ Q . For every fixed q, there are O(Nq) possible pairs of (qj ,qk ) that add up to q, and
therefore we need to (a) sum O(Nq) pairs of objective values, and (b) find the minimum

among them, which take O(Nq). Hence, the computation for each node takes O(N 2

q ). There

areO(n
2
+ n

4
+ · · · + 2) = O(n) intermediate nodes in total, and therefore the total complexity

of this part is O(nN 2

q ).

(3) The root: Finally at the root, we need to compute дroot(d ;α). There are Nq possible pairs of

(qj ,qk ) that add up to d . Therefore, we need to compute Nq sums, and find the minimum

among the resulting Nq values, which takes O(Nq).

Putting the pieces together, the computation for all values ofα takesNα×

(
O(nNβN

2

q ) +O(nN
2

q ) +O(Nq)

)
,

which in turn is O(nNαNβN
2

q ). Finally, finding the minimum among the Nα values simply takes

O(Nα ).

The backward procedure, which finds the quantities qi and the parameters βi , takes just O(n),
since it is just a substitution for every node. As a result, the total running time is O(nNαNβN

2

q ),

which based on the first part (Section B.1) is O
(
n( 1ϵ )

l1+l2+2
)
.

B.3 Remark on the ϵ-Approximation
As mentioned at the end of Section 3.2, if one requires the total payment in Definition 3.7 to be

at most ϵ (rather than nϵ) away from the optimal p∗, the running time of our algorithm will still

be polynomial in both n and 1/ϵ , i.e., O
(
n3( 1ϵ )

l1+l2+2
)
. To see that, notice in this case (31) and

(32) remain the same, and (33) changes to nKδ ≤ ϵ . Therefore, the upper bound enforced by the

constraints will be δ ≤ Cϵ
n , for some constant C . In this case, our choice of δ would be δ = d

⌈ dnCϵ ⌉
,

and hence Nq = O
(n
ϵ

)
. Nα and Nβ remain the same as before. The running time is O(nNαNβN

2

q ),

as computed previously, which in this case would be O
(
n3( 1ϵ )

l1+l2+2
)
.

C SUPPLEMENT TO SECTION 4
In this section, we first show the transformation of the problem on a tree to one on a binary tree,

and then prove Theorem 4.3.
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Fig. 8. The transformation of an arbitrary-degree tree to a binary tree

C.1 Transformation into Binary Tree
Lemma C.1. Given any tree with n nodes (suppliers), there exists a binary tree with additional nodes

which has the same solution (q∗i , . . . ,q
∗
n ,α

∗, β1, . . . , βn) for those nodes as the original network. The
binary tree has O(n) nodes.

Proof. Take any node i that has ki > 2 children. For any two children introduce a dummy

parent node. For any two dummy parent nodes introduce a new level of dummy parent nodes.

Continue this process until there are 2 or less nodes in the uppermost layer, and then connect them

to node i (See Fig. 8). The capacities of the lines immediately connected to the children are the

same as those in the original graph. The capacities of the new lines are infinite.

The total number of introduced dummy nodes by this procedure is

O(
ki
2

+
ki
4

+ · · · + 2) = O(ki ).

Since there are 1+k1+k2+ · · ·+kn = n nodes in total in the original tree, the number of introduced

additional nodes isO(k1 + · · ·+kn) = O(n). Therefore the total number of nodes in the new (binary)

tree is O(n). □

C.2 Proof of Theorem 4.3
Most of the proof is similar to the one presented in Section B. For this reason, we only highlight

the main points. The proof consists of ϵ-accuracy and run-time, as before.

C.2.1 ϵ-Accuracy.
Let Q1, . . . ,Qn , F1, . . . , Fn ,A

′,B ′
denote some δ -discretizations of sets [0,d1 + fch1(1) + fch2(1) −

f1], . . . , [0,dn + fch1(n) + fch2(n) − fn], [f1, f1], . . . , [fn , fn], A, B, respectively. Note that if any line

capacities are infinite, the intervals can be replaced by [0,
∑n

i=1 di ] instead. Similar as in Section B,

the constraints enforce an upper bound on the value of δ as δ ≤ Cϵ, for some constant C . Based

on Lemma (B.1), the sizes of the sets will be Nqi = O

(
1

ϵ

)
∀i , Nfi = O

(
1

ϵ

)
∀i , Nα = O

(
1

ϵ l1

)
and

Nβ = O

(
1

ϵ l2

)
C.2.2 Run-Time Analysis.
For every fixed α , the run-time of the required computations is as follows.

(1) The time complexity of computing дi (qi ;α) for each node i and each fixed value of qi is
O(NβNqi ). Therefore, computing it for all nodes and all values takes O(nNβN

2

q ).
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(2) Computing hi (fi ;α) for each node i and each fixed value of fi takes O(N
2

f ), because there

are O(Nf ) ×O(Nf ) pairs of values for (fch1(i), fch2(i)) (qi is automatically determined as the

closest point inQi to di + fch1(i) + fch2(i) − fi ). Therefore, its overall computation for all nodes

and all values takes O(nN 3

f ).

As a result, the overall computation takes Nα ×

(
O

(
nNβN

2

q

)
+O

(
nN 3

f

))
, which isO

(
n( 1ϵ )

l1+l2+2
)
+

O
(
n( 1ϵ )

l1+3
)
, or equivalently O

(
n( 1ϵ )

l1+max{l2,1}+2
)
. □
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