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ABSTRACT

Stochastic mirror descent (SMD) algorithms have recently
garnered a great deal of attention in optimization, signal pro-
cessing, and machine learning. They are similar to stochastic
gradient descent (SGD), in that they perform updates along
the negative gradient of an instantaneous (or stochastically
chosen) loss function. However, rather than update the pa-
rameter (or weight) vector directly, they update it in a “mir-
rored” domain whose transformation is given by the gradient
of a strictly convex differentiable potential function. SMD
was originally conceived to take advantage of the underly-
ing geometry of the problem as a way to improve the con-
vergence rate over SGD. In this paper, we study SMD, for
linear models and convex loss functions, through the lens of
H*° estimation theory and come up with a minimax interpre-
tation of the SMD algorithm which is the counterpart of the
H*™-optimality of the SGD algorithm for linear models and
quadratic loss. In doing so, we identify a fundamental con-
servation law that SMD satisfies and use it to study the con-
vergence properties of the algorithm. For constant step size
SMD, when the linear model is over-parameterized, we give
a deterministic proof of convergence for SMD and show that
from any initial point, it converges to the closest point in the
space of all parameter vectors that interpolate the data, where
closest is in the sense of the Bregman divergence of the poten-
tial function. This property is referred to as implicit regular-
ization: with an appropriate choice of the potential function
one can guarantee convergence to the minimizer of any de-
sired convex regularizer. For vanishing step size SMD, and in
the standard stochastic optimization setting, we give a direct
and elementary proof of convergence for SMD to the “true”
parameter vector which avoids ergodic averaging or appealing
to stochastic differential equations.

Index Terms— Stochastic gradient descent, mirror de-
scent, minimax optimality, convergence, implicit regulariza-
tion

1. PRELIMINARIES

Denote the training dataset by {(z;,y;) : ¢ = 1,...,n},
where x; € R™ are the inputs, and y; € R are the labels.
We assume that the data is generated through a linear model
with a parameter vector w € R™, plus some noise v;, i.e.,
Yi = :Jc;fw 4+ v; fort = 1,...,n. The noise can be due to
actual measurement error, or it can be due to modeling error
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(if the model is not rich enough to fully represent the data), or
it can be a combination of both. As a result, we do not make
any assumptions on the noise (such as stationarity, whiteness,
Gaussianity, etc.) for now.

We are often interested in the over-parameterized (so-
called interpolating) regime, i.e., when m > n. In this
case, there are many parameter vectors w (in fact, uncount-
ably infinitely many) that are consistent with the observa-
tions. We denote the set of these parameter vectors by
W = {weR™|y;=zlw,i=1,...,n} (Note the ab-
sence of the noise term, since in this regime we can fully
interpolate the data).

The total loss (empirical risk) on the training set can be
denoted by L(w) = Y " | L;(w), where L;(-) is the loss on
the individual data point ;. We assume that the loss L;(-) de-
pends only on the residual, i.e., the difference between the
prediction and the true label. In other words, L;(w) = I(y; —
xTw) , where I(-) can be any nonnegative differentiable func-
tion with [(0) = 0. Typical examples of I(-) include square
(I2) loss, Huber loss, etc. We remark that, in the interpolat-
ing regime, every parameter vector in the set VV renders each
individual loss zero, i.e., L;(w) = 0, for all w € W.

We will often consider two uncertainties, or error terms,
e¢; and ey, ;, defined as follows.

— T T T
€ =Y, — T; wi—1, and ey ; 1= x; W — T; Wi—1.

e; is often referred to as the innvovations and is the error in
predicting ¥;, given the input x;. e, ; is sometimes called the
prediction error, since it is the error in predicting the noiseless
output 7w, i.e., in predicting what the best output of the
model is. In the absence of noise, e; and e, ; coincide.

2. FUNDAMENTAL IDENTITY OF STOCHASTIC
MIRROR DESCENT

Stochastic Mirror Descent (SMD) [1, 2, 3, 4] is one of the
most widely used family of algorithms for stochastic opti-
mization, which includes SGD as a special case.

For any strictly convex and differentiable potential (),
the corresponding SMD updates are defined as

w; = argmin n;w’ VL;(wi—1) + Dy(w,w;—1), (1)

for ¢ > 1 (we cycle through the data, or select them at random,
for ¢ > n), where

Dy(w, wi—1) = P(w) = P(wi—1) = Vep(wi1)" (w —w;—1)
(2)



is the Bregman divergence with respect to the potential func-
tion ¢ (-), and 7; > 0 is the step size (learning rate). Since
the potential function is strictly convex, the updates can be
equivalently written as

Vip(wi) = Vip(wi—1)

which are uniquely defined because of the invertibility of V)
(implied by the strict convexity of (-)). In other words,
stochastic mirror descent can be thought of as transforming
the variable w, with a mirror map V(-), into Vi (w), and
performing SGD on the new variable. For this reason, Vi) (w)
is often referred to as the dual variable, while w is the primal
variable.

Different choices of the potential function ¢ (-) yield dif-
ferent optimization algorithms, which, as we will see, result
in different implicit regularizations. To name a few examples:
For the potential function ¢(w) = 1
vergence is Dy (w,w') = 1[jw — w'||?
reduces to that of SGD:

— 1V Li(w;—1), 3)

, and the update rule

- niVLi(wiq)y 4

W; = Wi—1

For ¢(w) = 3 ;w;logw;, the Bregman divergence be-
comes the unnormalized relative entropy (Kullback-Leibler
divergence) Dy (w,w') = 3 w;log o — = wj + 3w,
which corresponds to the exponentiated gradlent descent (aka
the exponential weights) algorithm. Other examples include
Y(w) = llw|fy = 3w Qu for a positive definite matrix
Q. which yields Dy (w,w') = $(w — w)TQ(w — w’), and
the g-norm squared ¢(w) = 3 [[w||7 with - + 2 = 1, which
yields the p-norm algorithms [5, 6].

Let us define the Bregman divergence with respect to the
loss function L; (note that L;(w) = I(y; — xI w) is convex
when [(+) is convex)

Li(w) — L (w") —w'), (5

The following result is an identity that characterizes SMD up-
dates [7].

Dy, (w,w') == — VL (w) T (w

Lemma 1. For any differentiable loss l(), any parameter w
and noise values {v;} that satisfy y; = xXw + v; for i =
1,...,n, and any sequence of step sizes {n;}, the following
relation holds for the stochastic mirror descent updates {w; }

given in Eq. (3)

Dy (w, wi—1) +nil(vi) = Dy(w, w;)+
Ez(wwwzfl) + ’thLi (w/wifl)v (6)

forall 1 > 1, where
Ei(w;, w;—1) := 1 Dr, (ws, wi—1)+
UiLi(wi)- @)

Note that E;(w;,w;_1) is not a function of w. Further-
more, even though it does not have to be nonnegative in gen-
eral, for 7; sufficiently small, it becomes nonnegative, be-
cause the Bregman divergence Dy (.,.) is nonnegative. The

Dw(wi, wifl) -

Dy (w, ;1) ——) > Du(ww)
SMD F——F; (w;, w;—1)

il (vi) ——

——> D, (w,w;_1)

Fig. 1. Each step of SMD can be viewed as a transformation
of the uncertainties.

interpretation of this result, as illustrated in Fig. 1, is that each
step of SMD can be thought of as a lossless transformation of
the input uncertainties to the output uncertainties, with spe-
cific coefficients that depend on the step size.

Summing Equation (6) over all i = 1,...,
following identity.

T leads to the

Lemma 2. For any differentiable loss 1(-), any parameter
w and noise values {v;} that satisfy y; = =, w + v; for
1 =1,...,n, any initialization wq, any sequence of step sizes
{n:}, and any number of steps T > 1, the following relation
holds for the stochastic mirror descent updates {w;} given in
Eg. (3)

w , Wo +Z77@ Uz

Dw w, wr )+

Mﬂ

wmwz 1 +771DL (U} Wi — 1)) ®)
’L:1

This is a fundamental property of SMD, which as will be
shown in the subsequent section, can be used to prove many
important results, in a very direct way.

3. MINIMAX OPTMIALITY OF STOCHASTIC
MIRROR DESCENT

In particular, using Lemma 2, one can show that SMD with
sufficiently small step size is the optimal solution to a mini-
max problem [7].

Theorem 3. Consider any differentiable loss [(-) with prop-
erty 1(0) = I'(0) = 0, and any initialization wq. For suffi-
ciently small sequence of step sizes {n;}, i.e., one for which
(w) — n;Li(w) is convex for all i, and for any number of
steps T' > 1, the stochastic mirror descent iterates {w; } given
by Eq. (3), w.r.t. any strictly convex potential 1 (-), are the op-
timal solution to the following minimization problem

Dw(w wT) +Zz 1771DL (w Wi— 1)

min max &)

{wi} w,{v:} Dy (w,wo) + Zz 1 Mil(vs)

Furthermore, the optimal value (achieved by SMD) is 1.

For SGD and square loss, this result reduces to the follow-
ing.

Corollary 4. For any initialization wy, any sequence of step
size 0 < n; < and any number of steps T' > 1, the

1
llill?”



stochastic gradient descent iterates {w;} given in Eq. (4) are
the optimal solution to the following minimization problem

T
min max flw — wTH2 + Zi:l 771‘6;29,1'

{wew v} fJw — w2 + 1, miv?

(10)

Furthermore, the optimal value (achieved by SGD) is 1.

This result in fact states that SGD is choosing the best
estimate that safeguards against the worst-case disturbances,
which is a conservative choice. However, this choice may
actually be the rational thing to do in situations when we do
not have much knowledge about the disturbances.

The above result holds for any horizon 7" > 1. A variation
of this result, i.e., when 7' — oo and without the ||w — wr||?
term in the numerator,zwas first shown in [8, 9]. In that case,
lw_q%hji%eij R in the minimax problem is in
fact the H°° norm of the transfer operator that maps the un-
known disturbances (w — wo, {,/7;v;}) to the prediction er-
rors {\/7iep i} [10, 11].

Theorem 3 also generalizes the result of [12], which is
the special case for the p-norm algorithms, again, with square
loss. Another interesting connection to the literature is that
it was shown in [13] that SGD is locally minimax optimal,
with respect to the H* norm. Strictly speaking, this result
is not a generalization of that result; however, Theorem 3 can
be interpreted as SGD/SMD being globally minimax optimal,
but with respect to a different metric in the numerator and
denominator.

the ratio |

4. DETERMINISTIC CONVERGENCE AND
IMPLICIT REGULARIZATION IN
OVER-PARAMETERIZED MODELS

In this section, we show some other implications of the funda-
mental identity of Section 2. In particular, we show conver-
gence and implicit regularization, in the over-parameterized
(so-called interpolating) regime, for general SMD algorithms.

The over-parameterized (interpolating) linear regression
regime is a simple but instructive setting, recently considered
in some papers [14, 15]. In this setting, since the model
is over-parameterized, it is assumed that it can perfectly
match (interpolate) the training data, and therefore the v; are
zero. The set of parameter vectors that interpolate the data
is given by W = {w|y; =zfw, i=1,...,n}, and fur-
ther L;(w) = I(y; — xTw), with any differentiable loss I(-).
Therefore, Eq. (8) reduces to

D7/’(w7 wO) = DU} (’UJ, wT)+
T

> (Bi(wi, wi—1) +miDr, (w,wi—1)), (1)
i=1

for all w € W, where
Dy, (w,w;—1)
= Li(w) — Li(wi—1) — VLi(w;—1)" (w — w;_1)
=0 — Uy — ] wi1) +U'(ys — & wia)z] (w — wi—1)

=~y — x?wi—l) + 1y — %Twi—l)(yi - $?wi—1)

which is notably independent of w. As a result, we can easily
minimize both sides of Eq. (11) with respect to w € W, which
leads to the following result.

Proposition 5. For any differentiable loss 1(-), any initial-
ization wy, and any sequence of step sizes {n;}, consider the
stochastic mirror descent iterates given in Eq. (3) with respect
to any strictly convex potential 1(-). If the iterates converge
to a solution wo, € W, then

Woo = argmin Dy (w, wy). (12)
wew

Remark. In particular, for the initialization wy =
arg min,, cpm Y(w), if the iterates converge to a solution
Woo € W, then

Weo = arg min ¢ (w). (13)
wew

An equivalent form of Proposition 5 has been shown re-
cently in, e.g., [14]'. Note that the result of [14] does not
say anything about whether the algorithm converges or not.
However, our fundamental identity of SMD (Lemma 2) al-
lows us to also establish convergence to the regularized point
in a deterministic sense, for some common cases, which will
be shown next.

What Proposition 5 says is that depending on the choice
of the potential function ¢ (-), the optimization algorithm can
perform an implicit regularization without any explicit regu-
larization term. In other words, for any desired regularizer, if
one chooses a potential function that approximates the regu-
larizer, we can run the optimization without explicit regular-
ization, and if it converges to a solution, the solution must be
the one with the minimum potential.

Next we establish convergence to the regularized point for
the convex case.

Proposition 6. Consider the following two cases.

(i) I(+) is differentiable and convex and has a unique root
at 0, (+) is strictly convex, and positive sequence {n;}
is such that v — n; L; is convex for all i, or

(ii) 1(-) is differentiable and quasi-convex and has zero
derivative only at 0, (-) is a-strongly convex, and

R ,
0 << —Cy—wiwial g

= s 121V (ys—=] wi—1)]

If either (i) or (ii) holds, then for any initialization wy, the
stochastic mirror descent iterates given in Eq. (3) converge to

Woo = argmin Dy (w, wy). (14)
wew

4.1. Example: Compressed Sensing via Stochastic Mirror
Descent

The implicit regularization results discussed earlier suggest
that with a proper choice of potential function (-), one may

ITo be precise, the authors in [14] assume convergence to a global min-
imizer of the loss function L(w) = Y"1, l(y; — zTw), which with their
assumption of the loss function {(-) having a unique finite root is equivalent
to assuming convergence to a point we € W.
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Fig. 2. The training loss and actual error of stochastic mirror
descent for compressed sensing (Section 4.1). SMD recovers
the actual sparse signal.

run stochastic mirror descent for any desired regularization,
without any explicit regularization. As an example, we con-
sider the popular problem of compressed sensing and see if
it can be solved via SMD, something that, to the best of our
knowledge, has not been studied in previous work.

In compressed sensing, one seeks the sparsest solution
to an under-determined (over-parameterized) system of linear
equations. The surrogate problem is

min Jw|y
w

s)
s.t. x?w:yi,izl,...,n.

A natural question to ask is can we do compressed sensing
using SMD, with ¢(w) = ||w||1? The answer, unfortunately,
is no, because ||w||; is neither differentiable nor strictly con-
vex. However, one can choose the potential function to be
P(w) = |lw[|{E¢ for any € > 0, along with a suitable choice
of loss function, e.g. I(z) = |z|'T.

To evaluate the performance of this approach, we consider
a k-sparse signal with k=10 nonzero parameters in m=100 di-
mensions (10% sparsity), and n=50 Gaussian measurements
(data points). As demonstrated in Figure 2, both the training
loss and the actual error (the difference from the true signal)
decrease as SMD progresses, and they converge to zero. SMD
indeed recovers to the true underlying sparse signal.

S. STOCHASTIC CONVERGENCE IN
UNDER-PARAMETERIZED MODELS

In Section 4, we showed several implications of the fun-
damental identity of SMD in the over-parameterized (so-
called interpolating) regime. In this section, we consider
the under-parameterized (online streaming) linear regression
setting, and show that the fundamental identity (8) yields
a simple proof for mean-square convergence of SMD to
the ground truth, for decaying step size sequence that satis-

fies the Robbins-Monro summability condition (3 .~ 7, =

S

In this setting, there is an online stream of data y; =
xTw +v; fori = 1,2,..., where v; are iid with E [v;] = 0
and E [vf] = o2, and the inputs are “persistently exciting,”

i.e., for any § > 0, there exists T > 0 s.t. 30, a2 = 1.

Proposition 7. Consider y; = zlw + v;,i > 1, where
E[v;] = 0, E[vv;] = 020;, and the ; are persistently ex-
citing. For any step size sequence {n;} such that y .o n; =
00, Yoo m? < oo, the stochastic mirror descent iterates

given in Eq. (3) with respect to any strongly convex potential
W(+), for a square loss, converge to w in a mean-square sense.

To see that, note that for the square loss and a linear
model, the identity (8), after some simple algebra, reduces to
the following form.

T
Dy(w,wo) = Dy(w, wr) + Z (Dw(wi, wi—1)+

i=1
Miepivi = Mi(epa + vl (wi = wina) +mie ), (16)
where we have used the fact that e; = ¢, ; + v;.

On the other hand, the update rule Vi) (w;) = Vi) (w;—1)+
i (ep,i +v;)x; can be expressed, using a Taylor expansion, as

w; = Vo (Vi (wi—1) + miepi + vi)z;)
= wi_1 + niM;(ep; +vi)z; + O(n}),

where M; := V2¢(w;_1) . This implies that Dy, (w;, w;_1)
= $(wi — wi)TV2(wi1)(w; — wi1) + O(n}) =
5771-2(61771' + v;)2xT Myz; + O(n?). Plugging this into (16)
leads to

T
Dy(w,u0) = Doty wr) + 3 (ep
=1

1
- gﬁf(ep,i +vi)x] Mz + niel ; + 0(?7?)) . (17)

Taking expected values from both sides, noting that e, ; and
w;_1 are independent of v;, we get

T

E [Dy (w,w0)] = E[Dy(w,wr)+) (=5 7B [af M)

~ SRR T M) 0B [,] +0)). (18)

From strong convexity of 1(-), we have V2¢(w;_1) = al,

and therefore E [2] Mjz;| < Xz;||* and E [e2 ;2] M;x;] <

é||xl\|2E [612771‘]' As a result, we have that Zg;l ni(1 —
2

Izl ) [e2,;] < cobecause 3, n? < coand 3, O(1?)

< 00, which implies that  [e? ;] goes to zero. If the inputs

are persistently exciting, this implies that E [|jw — w; _1]|?] —
0, which means SMD converges to the true parameter, in
mean-square sense.
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