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ABSTRACT

Despite perfectly interpolating the training data, deep neural networks (DNNs) can often generalize
fairly well, in part due to the “implicit regularization” induced by the learning algorithm. Nonetheless,
various forms of regularization, such as “explicit regularization” (via weight decay), are often used to
avoid overfitting, especially when the data is corrupted. There are several challenges with explicit
regularization, most notably unclear convergence properties. Inspired by convergence properties
of stochastic mirror descent (SMD) algorithms, we propose a new method for training DNNs with
regularization, called regularizer mirror descent (RMD). In highly overparameterized DNNs, SMD
simultaneously interpolates the training data and minimizes a certain potential function of the weights.
RMD starts with a standard cost which is the sum of the training loss and a convex regularizer of
the weights. Reinterpreting this cost as the potential of an “augmented” overparameterized network
and applying SMD yields RMD. As a result, RMD inherits the properties of SMD and provably
converges to a point “close” to the minimizer of this cost. RMD is computationally comparable to
stochastic gradient descent (SGD) and weight decay, and is parallelizable in the same manner. Our
experimental results on training sets with various levels of corruption suggest that the generalization
performance of RMD is remarkably robust and significantly better than both SGD and weight decay,
which implicitly and explicitly regularize the ¢ norm of the weights. RMD can also be used to
regularize the weights to a desired weight vector, which is particularly relevant for continual learning.

1 Introduction

1.1 Motivation

Today’s deep neural networks are typically highly overparameterized and often have a large enough capacity to easily
overfit the training data to zero training error (Zhang et al.,2016). Furthermore, it is now widely recognized that such
networks can still generalize well despite (over)fitting (Bartlett et al., [2020; |Belkin et al., 2018} 2019; Nakkiran et al.,
2021; Bartlett et al., 2021)), which is, in part, due to the “implicit regularization” (Gunasekar et al.l [2018a}; |Azizan
& Hassibi, [2019bj; [Neyshabur et al., 20155 Boffi & Slotinel [2021) property of the optimization algorithms such as
stochastic gradient descent (SGD) or its variants. However, in many cases, especially when the training data is known
to include corrupted samples, it is still highly desirable to avoid overfitting the training data through some form of
regularization (Goodfellow et al., 2016; |Kukacka et al.,|2017)). This can be done through, e.g., early stopping, or explicit
regularization of the network parameters via weight decay. However, the main challenge with these approaches is that
their convergence properties are in many cases unknown and they typically do not come with performance guarantees.

1.2 Contributions
The contributions of the paper are as follows.
1) We propose a new method for training DNNs with regularization, called regularizer mirror descent (RMD), which

allows for choosing any desired convex regularizer of the weights. RMD leverages the implicit regularization properties
of the stochastic mirror descent (SMD) algorithm. It does so by reinterpreting the explicit cost (the sum of the training
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loss and convex regularizer) as the potential function of an “augmented” network. SMD applied to this augmented
network and cost results in RMD.

2) Contrary to most existing explicit regularization methods, RMD comes with convergence guarantees, as a result of
the connection to SMD. More specifically, for highly overparameterized models, it provably converges to a point “close”
to the minimizer of the cost.

3) RMD is computationally and memory-wise efficient. It imposes virtually no additional overhead compared to
standard SGD, and can run in mini-batches and/or be distributed in the same manner.

4) We evaluate the performance of RMD using a ResNet-18 neural network architecture on the CIFAR-10 dataset with
various levels of corruption. The results show that the generalization performance of RMD is remarkably robust to data
corruptions and significantly better than both the standard SGD, which implicitly regularizes the £ norm of the weights,
as well as weight decay, which explicitly does so. Further, unlike other explicit regularization methods, e.g., weight
decay, the generalization performance of RMD is very consistent and not sensitive to the regularization parameter.

5) An extension of the convex regularizer can be used to guarantee the closeness of the weights to a desired weight
vector with a desired notion of distance. This makes RMD particularly relevant for continual learning.

Therefore, we believe that RMD provides a very viable alternative to the existing explicit regularization approaches.

1.3 Related Work

There exist a multitude of regularization techniques that are used in conjunction with the training procedures of DNNs.
See, e.g.,/Goodfellow et al.| (2016); [Kukacka et al.| (2017) for a survey. While it is impossible to discuss every work in
the literature, the techniques can be broadly divided into the following categories based on how they are performed: (i)
via data augmentation, such as mixup (Zhang et al., |2018b), (ii) via the network architecture, such as dropout (Hinton
et al.||2012), and (iii) via the optimization algorithm, such as early stopping (Li et al., 2020; Yao et al., 2007} Molinar1
et al.,[2021), among others.

Our focus in this work is on explicit regularization, which is done through adding a regularization term to the cost.
Therefore, the most closely comparable approach is weight decay (Zhang et al.l 2018a)), which adds an ¢s-norm
regularizer to the objective. However, our method is much more general, as it can handle any desired strictly-convex
regularizer.

il

As mentioned earlier, our algorithm for solving the explicitly-regularized problem leverages the “implicit regularization’
behavior of a family of optimization algorithms called stochastic mirror descent (Azizan & Hassibi, [2019b; |Azizan
et al, [2021). We discuss this further in Section[2.3]

The rest of the paper is organized as follows. We review some preliminaries about explicit and implicit regularization in
Section 2] We present the main RMD algorithm and its various special cases in Section[3] In Section[d] we perform an
experimental evaluation of RMD and demonstrate its generalization performance. In Section[5} we show that RMD can
be readily used for regularizing the weights to be close to any desired weight vector, which is particularly important for
continual learning. We present the convergence guarantees of RMD in Section [6] and finally conclude in Section[7]

2 Background

We review some background about stochastic gradient methods and different forms of regularization.

2.1 Stochastic Gradient Descent

Let L;(w) denote the loss on the data point ¢ for a weight vector w € RP. For a training set consisting of n data points,
the total loss is >~ ; L;(w), which is typically attempted to be minimized by stochastic gradient descent (Robbins &
Monro, [1951)) or one of its variants (such as mini-batch, distributed, adaptive, with momentum, etc.). Denoting the
model parameters at the ¢-th time step by w; € R? and the index of the chosen data point by i, the update rule of SGD
can be simply written as

wy = wy—1 —NVLi(wi—1), t>1, )

where 1) is the so-called learning rate, wy is the initialization, and V L; () is the gradient of the loss. When trained with
SGD, typical deep neural networks (which have many more parameters than the number of data points) often achieve
(near) zero training error (Zhang et al., [ 2016)), or, in other words, “interpolate” the training data (Ma et al., 2018).
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2.2 Explicit Regularization

As mentioned earlier, it is often desirable to avoid (over)fitting the training data to zero error, e.g., when the data has
some corrupted labels. In such scenarios, it is beneficial to augment the loss function with a (convex and differentiable)
regularizer ¢ : RP — R, and consider

H}li’n A Z L;(w) + ¢(w), (2)
i=1

where A > 0 is a hyper-parameter that controls the strength of regularization relative to the loss function. A simple and
common choice of regularizer is 1)(w) = ||w||?. In this case, when SGD is applied to (2) it is commonly referred to as
weight decay. Note that the bigger A is, the more effort in the optimization is spent on minimizing > ; L;(w). Since
the losses L;(-) are non-negative, the lowest these terms can get is zero, and thus, for A — oo, the problem would be

equivalent to the following:
min ¢ (w)
v , 3)
st. Li(w)=0, i=1,...,n.

2.3 Implicit Regularization

Recently, it has been noted in several papers that, even without imposing any explicit regularization in the objective, i.e.,
by optimizing only the loss function >, L;(w), there is still an implicit regularization induced by the optimization
algorithm used for training (Gunasekar et al.,|2018alb; |Azizan & Hassibi, 2019b). Namely, with sufficiently small step
size, SGD tends to converge to interpolating solutions with minimum ¢» norm (Gunasekar et al.||2018a}; |Poggio et al.,
2020), i.e.]l

min ],

S.t. Li(w)zo, 1=1,...,n.

More generally, it has been shown (Azizan & Hassibi, [2019bjc};|Azizan et al., [2021) that SMD, whose update rule is
defined for a differentiable strictly-convex “potential function” ¢ () as

Vip(wy) = Vip(wi—1) —nV Li(wi—1), 4)
with proper initialization (wg ~ 0 and sufficiently small learning rate converges to the solution 0
min ) (w)
v ) )]
st. Li(w)=0, i=1,...,n.

Note that this is equivalent to the case of explicit regularization with A — oo, i.e., problem (3).

3 Proposed Method: Regularizer Mirror Descent (RMD)

When it is undesirable to reach zero training error, e.g., due to the presence of corrupted samples in the data, one cannot
rely on the implicit bias of the optimization algorithm to avoid overfitting. That is because these algorithms would
interpolate the corrupted data as well. This suggests using explicit regularization as in (). Unfortunately, standard
explicit regularization methods, such as weight decay, which is simply employing SGD to (2), do not come with
convergence guarantees. Here, we propose a new algorithm, called Regularizer Mirror Descent (RMD), which, under
appropriate conditions, provably regularizes the weights for any desired differentiable strictly-convex regularizer ¢(-).
In other words, RMD converges to a weight vector close to the minimizer of (2).

We are interested in solving the explicitly-regularized optimization problem (@). Let us define an auxiliary variable

z € R™ with elements z[1], ..., z[n]. The optimization problem (2) can be transformed into the following form:
n 22 [7/]
Ay 2
I;[UI}E Z 2 + () 6
i=1 ( )
st z[i] =v2L;(w), i=1,...,n.

ISee Section@for a more precise statement.

2For practical reasons, one might not be able to set the initial weight vector exactly to zero. However, it can be initialized
randomly around zero, which is common practice, and that would be of no major consequence.

3See Section@]and Theoremfor a more precise statement.
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Algorithm 1 Regularizer Mirror Descent (RMD)

Require: A, 7, wq
1: Imitialization: w < wq, 2 < 0
2: repeat
3: Take a data point ¢

¢l (0] = v2Li(w))

w  VipL (w(w) + mvmm)

B

until convergence
return w

The objective of this optimization problem is a strictly-convex function

~ A
and there are n equality constraints. We can therefore think of an “augmented” network with two sets of weights, w
and z. To enforce the constraints z[i] = \/2L;(w), we can define a “constraint-enforcing” loss £ (z[z] —/ 2L¢(w)) ,

where / (+) is a differentiable convex function with a unique root at 0 (e.g., the square loss é( )= %). Thus, (@) can be
rewritten as

min  (w, z)
c (7)
st 0 (z[i] - \/ZLi(w)> 0, i=1,...,n.

Note that (7) is similar to the implicitly-regularized optimization problem (5), which can be solved via SMD. To do so,

we need to follow (4) and compute the gradients of the potential 7)(-, -), as well as the loss ¢ (z[z] - 2Li(w)) , with

respect to w and z. We omit the details of this straightforward calculation and simply state the result, which we call the
RMD algorithm.

At time ¢, when the i-th training sample is chosen for updating the model, the update rule of RMD can be written as
follows:

Vip(wy) = Vp(wi—1) + %Vh(wtql
ali) = z-ali] - 5,
zi[j] = z-1lj], Vi #4, ®)

where ¢, ; = nl’ (zt,l [i] — A /2Li(wt,1)), f’(-) is the derivative of the constraint-enforcing loss function, and the
variables are initialized with wy = 0 and 2y = 0. Note that because of the strict convexity of the regularizer v (-),

its gradient V(+) is an invertible function, and the above update rule is well-defined. Algorithm summarizes the
procedure. As will be shown in Section[6] under suitable conditions, RMD provably solves the optimization problem (2).

One can choose the constraint-enforcing loss as (-) = Q, which implies #'(-) = (-), to simply obtain the same update

2
rule as in @) with ¢;; =7 (zt_l[i] — \/QLZ-(wt_l)).

3.1 Special Case: g-norm Potential

An important special case of RMD is when the potential function 1 (-) is chosen to be the ¢, norm, i.e., ¥(w) =

%Hng = % b _ 1 lw[k]|%, for a real number ¢ > 1. Let the current gradient be denoted by g := V L;(w;—1). In this

case, the update rule can be written as

wilk] = |&a| 7 sign (&), VE
R . Cti
z[i] = ze-1[i] — N

z[j] = ze-1[7], Vi # i, )
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for &.; = |w,_1[k]|7 " sign(w;_1[k]) + \/ﬁg[lﬂ, where w,[k] denotes the k-th element of w; (the weight
vector at time t) and g[k] is the k-th element of the current gradient g. Note that for this choice of potential function, the
update rule is separable, in the sense that the update for the k-th element of the weight vector requires only the k-th
element of the weight and gradient vectors. This allows for efficient parallel implementation of the algorithm, which is

crucial for large-scale tasks.

Even among the family of g-norm RMD algorithms, there can be a wide range of regularization effects for different
values of q. Some important examples are as follows:

¢1 norm regularization promotes sparsity in the weights. Sparsity is often desirable for reducing the storage and/or
computational load, given the massive size of state-of-the-art DNNs. However, since the ¢;-norm is neither differentiable
nor strictly convex, one may use ¢ (w) = %ﬂ [|wl|1 L€ for some small € > 0 (Azizan & Hassibi, 2019a).

{~, morm regularization promotes bounded and small range of weights. With this choice of potential, the weights tend
to concentrate around a small interval. This is often desirable in various implementations of neural networks since it
provides a small dynamic range for quantization of weights, which reduces the production cost and computational
complexity. However, since /. is, again, not differentiable, one can choose a large value for ¢ and use ¢ (w) = 1|jw]|

T q
to achieve the desirable regularization effect of ¢, norm (¢ = 10 is used in|Azizan et al.| (2021)).

{5 norm still promotes small weights, similar to £; norm, but to a lesser extent. The update rule is

wilk] = we1 k] + ——tl—g[k], Vk

2L;(we—1)
Ct,i
zli] = 21 [i] — %7
zljl = zalil,  Vi#id (10)
3.2 Special Case: Negative Entropy Potential
One can choose the potential function () to be the negative entropy, i.e., )(w) = > r_, w[k]log(w[k]). For this

particular choice, the Bregman divergence reduces to the Kullback—Leibler divergence. Let the current gradient be
denoted by g := VL;(w;—1). The update rule would be

wy[k] = w;—1[k] exp <2Li(’wt_1)g[k¢]> vk
ali] = ziali] - 5,
zlj] = z-1lil, Vi #4, (11)

This update rule requires the weights to be positive.

4 Experimental Results

As mentioned in the introduction, there are many ways to regularize DNNs and improve their generalization performance,
including methods that perform data augmentation, a change to the network architecture, or early stopping. However,
since in this paper we are concerned with the effect of the learning algorithm, we will focus on comparing RMD with
the standard SGD (which induces implicit regularization) and the standard weight decay (which attempts to explicitly
regularize the /5 norm of the weights). No doubt the results can be improved by employing the aforementioned methods
with these algorithms, but we leave that study for the future since it will not allow us to isolate the effect of the algorithm.

As we shall momentarily see, the results indicate that RMD outperforms both alternatives by a significant margin, thus
making it a viable option for explicit regularization.

4.1 Setup

Dataset. To test the performance of different regularization methods in avoiding overfitting, we need a training set that
does not consist entirely of clean data. We, therefore, took the popular CIFAR-10 dataset (Krizhevsky & Hinton, 2009),
which has 10 classes and n = 50, 000 training data points, and considered corrupting different fractions of the data.
In the first scenario, we corrupted 25% of the data points, by assigning them a random label. Since, for each of those
images, there is a 9/10 chance of being assigned a wrong label, roughly 9/10 x 25% = 22.5% of the training data
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Figure 1: 25% corruption of the training set.

had incorrect labels. In the second scenario, we randomly flipped 10% of the labels, resulting in roughly 9% incorrect
labels. For the sake of comparison, in the third scenario, we considered the uncorrupted data set itself.

Network Architecture. We used a standard ResNet-18 (He et al.,|2016)) deep neural network, which is commonly used
for the CIFAR-10 dataset. The network has 18 layers, and around 11 million parameters. Thus, it qualifies as highly
overparameterized. We did not make any changes to the network.

Algorithms. We use three different algorithms for optimization/regularization.

1. Standard SGD (implicit regularization): First, we train the network with the standard (mini-batch) SGD. While

there is no explicit regularization, this is still known to induce an implicit regularization, as discussed in
Section 2.3

2. Weight decay (explicit regularization): We next train the network with an ¢s-norm regularization, through
weight decay. We ran weight decay with a wide range of regularization parameters, \.

3. RMD (explicit regularization): Finally, we train the network with RMD, which is provably regularizing with
an ¢, norm. For RMD we also ran the algorithm for a wide range of regularization parameters, \.

In all three cases, we train in mini batches—mini-batch RMD is summarized in Algorithm [2]in the Appendix.

4.2 Results

The training and test accuracies for all three methods are given in Figs. [T{3] Fig. [I]shows the results when the training
data is corrupted by 25%, Fig.[2] when it is corrupted by 10%, and Fig. [3|when it is uncorrupted.

As expected, because the network is highly overparameterized, in all cases, SGD interpolates the training data and
achieves almost 100% training accuracy.

As seen in Fig. |1} at 25% data corruption SGD achieves 80% test accuracy. For RMD, as A varies from 0.7 to 2.0, the
training accuracy increases from 67% to 82% (this increase is expected since RMD should interpolate the training
data as A — o0). However, the test accuracy remains generally constant around 85%, with a peak of 87%. This is
significantly better than the generalization performance of SGD. For weight decay, as A increases from 0.001 to 0.004,
the training accuracy increases from 70% to 98% (implying that there is no need to increase A beyond 0.004). The test
accuracy, on the other hand, is rather erratic and varies from a low of 67% to a peak of 80%.

As seen in Fig. [2] at 10% data corruption SGD achieves 87.5% test accuracy. For RMD, as A varies from 0.7 to 2.0, the
training accuracy increases from 82% to 92.5%. The test accuracy remains generally constant around and the peak of
88.5% is only marginally better than SGD. For weight decay, the training accuracy increases from 86% to 99%, while
the test accuracy is erratic and peaks only at 80%.

Finally, for the sake of comparison, we show the results for the uncorrupted training data in Fig.[3| As expected, since
the data is uncorrupted, interpolating the data makes sense and SGD has the best test accuracy. Both RMD and weight
decay approaches have higher test accuracy as A increases, with RMD having superior performance.
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Figure 2: 10% corruption of the training set.
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Figure 3: Uncorrupted training set.

We should also mention that we have run experiments with 40% corruption in the data. Here SGD achieves 70% test

accuracy, while RMD achieves a whopping 81.5% test accuracy with only 64% training accuracy. See the Appendix for
more details.

5 Regularization for Continual Learning

It is often desirable to regularize the weights to remain close to a particular weight vector. This is particularly useful
for continual learning, where one seeks to learn a new task while trying not to “forget” the previous task as much as
possible (Lopez-Paz & Ranzato, 2017} |[Kirkpatrick et al.,[2017; |[Farajtabar et al.,[2020). In this section, we show that our

algorithm can be readily used for such settings by initializing wy to be the desired weight vector and suitably choosing
a notion of closeness.

Augmenting the loss function with a regularization term that promotes closeness to some desired weight vector w'™¢,
one can pose the optimization problem as

min A Li(w) + [w — wE|*. (12)
i=1

More generally, using a Bregman divergence D, (-, -) corresponding to a differentiable strictly-convex potential function
1 : RP — R, one can pose the problem as

min A Li(w) + Dy (w, w'™). (13)
i=1
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Note that Bregman divergence is defined as Dy (w,w™) = ¢(w) — (w™) — Vep(w™)? (w — w™), is non-
negative, and convex in its first argument. Due to strict convexity of ¢, we also have Dy, (w, w'™) = 0 iff w = w'™®.
For the choice of ¢)(w) = 1||w]||?, for example, the Bregman divergence reduces to the usual Euclidean distance
Dy (w,wp) = 4w — w2

Same as in Section[3] we can define an auxiliary variable z € R", and rewrite the problem as

’ i=1 (14)
st z[i] =2L;(w), i=1,...,n.

reg
It can be easily shown that the objective of this optimization problem is a Bregman divergence, i.e., Dd? < [lﬂ , [wo } ) ,

corresponding to a potential function ¢ ( [f] ) = 1h(w) + 3|z||>. As will be discussed in SectionH this is exactly

in a form that an SMD algorithm with the choice of potential function 1[1 initialization wy = w™® and zy = 0, and a
sufficiently small learning rate will solve. In other words, Algorithm [I] with initialization wo = w"™¢ provably solves the
regularized problem (T3).

6 Convergence Guarantees

In this section, we provide convergence guarantees for RMD under certain assumptions, motivated by the implicit
regularization property of stochastic mirror descent, recently established in|Azizan & Hassibi|(2019b);|Azizan et al.
(2021)).

Let us denote the training dataset by {(z;,y;) : i = 1,...,n}, where z; € R? are the inputs, and y; € R are the labels.
The output of the model on data point ¢ is denoted by a function f;(w) := f(x;,w) of the parameter w € R?. The loss
on data point 7 can then be expressed as L;(w) = £(y; — f;(w)) with ¢(-) being convex and having a global minimum
at zero (examples include square loss, Huber loss, etc.). Since we are mainly concerned with highly overparameterized
models (the interpolating regime), where p>>n, there are (infinitely) many parameter vectors w that can perfectly fit
the training data points, and we can define

W= {weR| fi(w) =y, i=1,...,n}
={weR|Li(w)=0,i=1,...,n}.
Let w* € W denote the interpolating solution that is closest to the initialization wg in Bregman divergence:

w* =argmin Dy (w, wp)
v (15)
s.t. fi(w):y,', i=1,...,n.

It has been shown that, for a linear model f(z;, w) = :z:iTw, and for a sufficiently small learning rate 7 > 0, the iterates
of SMD @[) with potential function ¢ (-), initialized at wg, converge to w* (Azizan & Hassibi, 2019b).

When initialized at wy = arg min,, ¢(w) (which is the origin for all norms, for example), the convergence point
becomes the minimum-norm interpolating solution, i.e.,

w* =argmin  Y(w) 6
s.t. filw)=1vy;, i=1,...,n.

While for nonlinear models, the iterates of SMD do not necessarily converge to w*, it has been shown that for highly-
overparameterized models, under certain conditions, this still holds in an approximate sense (Azizan et al., [ 2021). In
other words, the iterates converge to an interpolating solution w, € W which is “close” to w*. More formally, the
result from|Azizan et al.|(2021) along with its assumptions can be stated as follows.

Let us define Dy, (w,w') := L;(w) — Li(w') — VL;(w')T (w — w’), which is defined in a similar way to a Bregman
divergence for the loss function. The difference though is that, unlike the potential function of the Bregman divergence,
due to the nonlinearity of f;(-), the loss function L;(-) = ¢(y; — f;(-)) need not be convex (even when £(-) is). Further,
denote the Hessian of f; by Hy,

*We refrain from using V? f; for Hessian, which is typically used for Laplacian (divergence of the gradient).
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Assumption 6.1. Denote the initial point by wy. There exists w € W and a region B = {w’ € RP | Dy (w,w’) < €}
containing wy, such that Dy, (w,w’) > 0,i=1,...,n, forallw’ € B.

Assumption 6.2. Consider the region B in Assumption The f;(-) have bounded gradient and Hessian on the convex
hull of B, ie., ||V fi(w')]| <7, and o < Ain (Hy, (w')) < Amax(Hy, (w')) < B,i=1,...,n,forall w’ € conv B.

Theorem 6.3 (Azizan et al.|(2021)). Consider the set of interpolating solutions W = {w € R? | f(x;,w) = y;, i =
1,...,n}, the closest such solution w* = arg min,, ¢, Dy (w, wo), and the SMD iterates given in (@) initialized at wo,
where every data point is revisited after some steps. Under Assumptions|6.1|and for sufficiently small step size, i.e.,
Sor any n > 0 for which ¥(-) — nL;(+) is strictly convex on B for all i, the following holds.

1. The iterates converge to wo, € W.
2. Dy(w*, weo) = ofe).

In a nutshell, Assumption [6.1] states that the initial point wy is close to the set of global minima )V, which arguably
comes for free in highly overparameterized settings (Allen-Zhu et al.,[2019), while Assumption [6.2]states that the first
and second derivatives of the model are locally bounded. Motivated by the above result, we now return to RMD and its
corresponding optimization problem.

Let us define a learning problem over parameters [Qﬂ e RPH" with f; ([ﬂ) = /2L;(w) — z[i], §; = 0, and

L; ([g]) =7 (g)i — fi ([i})) = é(z[z]— 2Li(w)) for i=0,...,n. Note that in this new problem, we now

have p+n parameters and n constraints/data points, and since p > n, we have p + n > n, and we are still in the
highly-overparameterized regime (even more so). Thus, we can also define the set of interpolating solutions for the new
problem as

W= {m eRPT | fi(w) =1, i = ln} (17)

z
Let us define a potential function ¢ ( [15} ) = 1(w) + 3|z/|* and a corresponding SMD

v ([s])=ve ([ e ([22])

initialized at {u())o] . It is straightforward to verify that this update rule is equivalent to that of RMD, i.e., (§).

On the other hand, from (T3]), we have

w* = arg min Dd; ({Zj] , {Uéo})

(18)
s.t. fz({wD:g i=1,...,n.
. R w wo _ A 2 . iy s
Plugging D ; <[z , [ 0 ]) = Dy(w,wo) + 512/ and fi { }) —z[i] into (I8), it is easy to see that
it is equivalent to for wy = w'™8, and equivalent to (6) for wy = 0. The formal statement of the theorem follows

from a direct application of Theorem

Assumption 6.4. Denote the initial point by [u())o]' There exists 1;} € W and a region B =

/ !/ /
{[ZI,} € RPJF"\Dlzj ([120} , [g,]) Se} containing {U())o} such that D7 ([g} , [g,}) > 0,i =1,...,n, for all

/

Z;)/:| S B

Assumption 6.5. Consider the region Bin Assumption The f; (+) have bounded gradient and Hessian on the convex

R R ’ / /
hull of B, ie., |V f; (B’,D < v, and & < Amin (Hf ([Z’,D) < Amax (Hf ([gﬂD) <B,i=1,...,n,for

!
w 5
all o/ | € conv B.
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Theorem 6.6. Consider the set of interpolating solutions W defined in (T)), the closest such solution W* defined in

(T8), and the RMD iterates given in (8) initialized at [ 00], where every data point is revisited after some steps. Under

Assumptionsand for sufficiently small step size, i.e., for any n > 0 for which 1[)() — 77[:1() is strictly convex on
B for all i, the following holds.

1. The iterates converge to [Z}m} € W.

oo

2. D <w B’SD = o(e).

Despite its somewhat complicated look, similar as in Assumption Assumption states the initial point [ 00]

is close to the (new) (p + n)-dimensional manifold W, which is reasonable because the new problem is even more
overparameterized than the original p-dimensional one. Similar as in Assumption [6.2] Assumption [6.5|requires the first
and second derivatives of the model to be locally bounded.

We should emphasize that while Theorem states that we converge to the manifold W, it does not mean that it
is fitting the training data points or achieving zero training error. That is because W e RPT™ is a different (much
higher-dimensional) manifold than W € RP, and interpolating it would translate to fitting the constraints defined by the
regularized problem.

7 Conclusion and Outlook

We presented Regularizer Mirror Descent (RMD), a novel efficient algorithm for training DNN with any desired
strictly-convex regularizer. The starting point for RMD is a standard cost which is the sum of the training loss and a
differentiable strictly-convex regularizer of the network weights. For highly-overparameterized models, RMD provably
converges to a point “close” to the minimizer of this cost. The algorithm can be readily applied to any DNN and enjoys
the same parallelization properties as SGD. We demonstrated that RMD is remarkably robust to various levels of label
corruption in data, and it outperforms both the implicit regularization induced by SGD and the explicit regularization
performed via weight decay, by a wide margin. We further showed that RMD can be used for continual learning, where
regularization with respect to a previously-learned weight vector is critical.

Given that RMD enables training any network efficiently with a desired regularizer, it opens up several new avenues for
future research. In particular, an extensive experimental study of the effect of different regularizers on different datasets
and different architectures would be instrumental to uncovering the role of regularization in modern learning problems.
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Appendix

In what follows, we first show the reduction of RMD to SMD for A — oo. Then, in Appendix [B| we provide further
details on the experiments for the purpose of reproducing the results. Finally, in Appendix |C] we provide the complete
set of experimental results.

A  Reduction of RMD to SMD for A — oo

Here, we show that, for A — oo, RMD reduces to the standard SMD, which jives with the fact that the optimization
problem it solves, i.e., @I), for A — oo reduces to the optimization problem that SMD solves, i.e., @

Note that when A\ — oo, the update rule for z; in @]) vanishes, and we have z; = 0 for all ¢. Therefore, the update
becomes

nt’ (7 2L,;(wt_1))

Vi(wy) = Vp(we—1) + VL;(w;_1). 19
¥ (wy) P(wi—1) S0y ) (wi—1) (19)

For {(-) = %, we have ¢'(-) = (+), and the update rule further reduces to
Vip(wi) = Vp(wi—1) — 0V Li(wi-1), (20)

which is precisely the update rule for SMD. In Section

B Additional Details on the Experiments

Dataset. To test the ability of different regularization methods in avoiding overfitting, we need a training set that does
not consist entirely of clean data. Thus, we took the popular CIFAR-10 dataset (Krizhevsky & Hinton, |2009)), which has
10 classes and n = 50, 000 training data points, and created 3 new datasets by corrupting 10%, 25%, 40% of the data
points via assigning them random labels. Note that for each of those images, there is a 9/10 chance of being assigned a
wrong label. Therefore, on average, there are about 9%, 22.5% and 36% incorrect labels in the aforementioned datasets,
respectively. To have a standard baseline, we also run our experiments on the standard CIFAR-10 dataset (i.e., 0%
corruption). To have a competitive generalization performance while not creating any variation between experiments,
we select a random data augmentation (crop + horizontal flip) for each dataset and use that for every experiment on the
same dataset. Therefore, exactly the same data points are used in the experiments that are on the same corruption level
dataset. No corruption is applied on the test data, i.e., the standard test set of CIFAR-10 is used for evaluating the test
accuracies.

Network Architecture. We train a standard ResNet-18 (He et al. |2016) deep neural network, as implemented
in https://github.com/kuangliu/pytorch-cifar, which is commonly used for the CIFAR-10 dataset. The
network has 18 layers, and around 11 million parameters. Thus, it qualifies as highly overparameterized. We do not
make any changes to the network, and we use the same structure in every experiment.

Algorithms. We use three different algorithms for optimization/regularization.

1. Standard SGD (implicit regularization): First, we train the network with the standard (mini-batch) SGD. While

there is no explicit regularization, this is still known to induce an implicit regularization, as discussed in
Section 2.3

2. Explicit regularization via weight decay: This time, we train the network with an explicit £5-norm regulariza-
tion, through weight decay.

3. Explicit regularization via RMD: Finally, we train the network with RMD, which is provably regularizing with
an /5 norm.
Mini Batch. For all three algorithms, we train in mini batches. The size of mini batches that we use is 128, which is a
common choice for CIFAR-10. The mini-batch implementation of RMD is summarized in Algorithm [2]

Initialization. The parameters w and z are initialized randomly around zero.

Learning Rate. We used three different learning rates for each of the algorithms: 0.001, 0.01 and 0.1. Among all,
0.1 provided the best convergence behavior for the SGD and RMD, whereas 0.01 worked the best for the explicit
regularization via weight decay. The reported results are given for the best-performing learning rate choices.
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Algorithm 2 Mini-batch Regularizer Mirror Descent (RMD)

Require: A, 7, wq
1: Imitialization: w < wq, 2 < 0
2: repeat
3: Take a mini batch B
£ L)y Yiep Liw)
5 VL(w) + ﬁ > e VLi(w)
6: Z4+ ‘TglzieBz[i]
7 ¢l (2 - 2E(w))

8w Vol (w(w) + CwVL(w)>

9: for i € B do

10 2[i] <= 2[i] = £
11: end for

12: until convergence

13: return w

Stopping Criterion. In order to determine the stopping point for each of the algorithms, we use the following stopping
criteria.

1. For SGD, we train until the training data is interpolated, i.e., 100% training accuracy, similar as in |Azizan et al.
2021).

2. Note that it is not feasible to determine the stopping criterion based on the training accuracies for the explicit
regularization via weight decay or RMD. Therefore, for the explicit regularization via weight decay, we
consider the change in the total loss over the training set. We stop the training if the change in the total loss is
less than 0.01% over 500 consecutive epochs.

3. For RMD, we know that the algorithm eventually interpolates the new manifold W, i.e., fits the constraints in
@. Thus, we can use the total change in the constraints, i.e.,

and we stop the training if this summation improves less than 0.01% over 500 consecutive epochs.

We should emphasize that, given our choices for the setup, the only difference between the experiments on the same
corruption level dataset is the optimization algorithm.
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C Complete Experimental Results

In this section, we present the experimental results on 40%, 25%, 10% corrupted and uncorrupted CIFAR-10 training
sets.

C.1 Results on 40% Corruption of the Training Set

The training and test accuracies for the three algorithms with various values of A are given in Table[T]and visualized in
Figure 4| At 40% data corruption, SGD interpolates the training data due to high overparameterization and achieves
100% training accuracy. However, this interpolation results in overfitting and thus 67.41% test accuracy.

Varying the regularization parameter A from 0.0012 to 0.01 for weight decay increases the training accuracy from
55.65% to 97.18%. This increase is expected since it corresponds to decreasing the amount of regularization on the
weights, i.e., increasing the contribution of the classification error in the optimization objective. However, as it can
be seen from Table [I]and Figure ] the test accuracy behaves rather erratic for weight decay. It can achieve better
generalization performance than SGD for small values of A, while the performance is very sensitive to the choice of A.
It is also worth noting that different runs of weight decay with the same hyperparameters often result in (sometimes
drastically) different test accuracies.

On the other hand, for RMD, as A varies from 0.7 to 16.0, the training accuracy increases from 50.21% to 98.45%.
This increase is again expected since RMD reduces to SMD as A — oo, which means that it would interpolate the
training data as A — oo. Unlike weight decay, the test accuracy behaves gracefully and predictably with varying
A values. Furthermore, for all A values between 1.0 and 2.0, it achieves a test accuracy greater than 80%, with the
peak of 83.63%. This is a whopping 16% improved test accuracy over SGD and 9% improved test accuracy over the
best-performing weight decay result. This further highlights the superior generalization performance of RMD via solely
solving a different optimization problem and makes it a viable option for training on corrupted datasets.

Early stopping has been considered as one of the prominent methods to regularize the neural network training (Caruana
et al., 2001} |Prechelt, [ 1998)). However, the stopping criterion or the method is often ad-hoc and tailored for each
architecture and dataset based on various heuristics, without a mathematical prescription. RMD potentially removes the
need for such heuristics and provides a well-formulated and guaranteed stopping criterion, i.e., when the constraints are
satisfied. The experiments further show that the points that RMD converges to also generalize well and provide robust
test accuracy to small variations in the regularization parameter. We believe these properties combined make RMD a
strong candidate to train DNNs.
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Figure 4: 40% corruption of the training set.
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Table 1: Comparison between RMD and the two baselines, (1) implicit regularization induced by SGD and (2) explicit
regularization through weight decay, for 40% corruption

Algorithm Lambda Training Accuracy Test Accuracy

SGD N/A 100% 67.41%
RMD 0.7 50.21% 74.64%
0.8 53.36% 77.88%

0.9 55.86% 80.81%

1.0 57.86% 83.02%

1.1 59.26% 82.99%

1.2 60.51% 83.63%

1.3 61.70% 83.49%

1.4 62.62% 83.34%

1.5 63.75% 82.29%

1.6 64.42% 82.58%

1.7 65.84% 82.26%

1.8 66.71% 81.76%

1.9 66.62% 81.03%

2.0 68.80% 81.20%

4.0 84.88% 74.28%

16.0 98.45% 68.80%

Weight Decay  0.0012 55.65% 74.07%
0.0015 60.14% 73.46%

0.0018 75.34% 54.79%

0.002 82.26% 54.26%

0.003 91.46% 57.19%

0.005 95.57% 59.70%

0.01 97.18% 63.00%

C.2 Results on 25% Corruption of the Training Set

The training and test accuracies for the three algorithms with various values of A for 25% corruption are summarized
in Table 2| As mentioned before, because the network is highly overparameterized, SGD expectedly interpolates the
training data and achieves almost 100% training accuracy. The test accuracy for SGD is just shy of 80%. Varying the
regularization parameter A for weight decay, it can only achieve marginally better generalization performance than
SGD, while often performing worse.

RMD, on the other hand, significantly outperforms SGD and all the different runs of weight decay, achieving a top test
accuracy of almost 87%. This performance is not too sensitive to A in the ranges we considered. Moreover, as expected
with increasing ), it reduces to SGD.
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Table 2: Comparison between RMD and the two baselines, (1) implicit regularization induced by SGD and (2) explicit
regularization through weight decay 25% corruption

Algorithm Lambda Training Accuracy Test Accuracy

SGD N/A 100% 79.42%
RMD 0.7 67.01% 83.22%
0.8 69.15% 85.14%

0.9 70.20% 85.43%

1.0 71.81% 85.71%

1.1 72.90% 86.12%

1.2 74.38% 86.92%

1.3 75.04% 86.35%

1.4 75.16% 86.62%

1.5 75.84% 85.74%

1.6 77.56% 85.72%

1.6 78.36% 85.69%

1.7 78.62% 86.26%

1.8 79.07% 86.00%

1.9 80.41% 85.01%

2.0 82.15% 84.51%

4.0 91.35% 79.38%

16.0 98.67% 79.03%

Weight Decay  0.001 69.04% 67.83%
0.0012 71.38% 80.21%

0.0015 78.43% 73.82%

0.0018 82.26% 75.37%

0.002 86.13% 66.98%

0.003 93.64% 71.81%

0.004 97.97% 74.06%

C.3 Results on 10% Corruption of the Training Set

The training and test accuracies for the three algorithms with various values of A for 10% corruption are summarized in
Table 3] Interpolating the 10% corrupted training data perfectly, SGD achieves test accuracy of 87.87%. Note that even
though we have used several different regularization parameters A ranging from 0.001 to 0.006, which yield different
training errors, weight decay does not outperform SGD, indicating that the standard way of explicit regularization
may not provide the desired improvement in the generalization performance in certain datasets. Moreover, the erratic
behavior of test accuracy with respect to the choice of \ is also present for 10% corrupted training set.

On the other hand, RMD consistently attains well-behaved test accuracy with respect to the choice of regularization
parameter A. Even though, in this case, the improvement over SGD is small, the test accuracy of RMD is consistently
better for A between 1.1 and 1.9, with a peak of 88.49% for A = 1.4.
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Table 3: Comparison between RMD and the two baselines, (1) implicit regularization induced by SGD and (2) explicit
regularization through weight decay, for 10% corruption

Algorithm Lambda Training Accuracy Test Accuracy

SGD N/A 100% 87.87%
RMD 0.7 81.24% 86.09%
0.8 83.41% 87.01%

0.9 84.23% 87.14%

1.0 85.53% 87.48%

1.1 87.08% 87.89%

1.2 87.45% 88.00%

1.3 88.68% 88.20%

1.4 89.05% 88.49%

1.45 89.46% 88.26%

1.5 89.91% 87.02%

1.6 90.62% 87.71%

1.7 91.43% 87.97%

1.8 91.76% 87.99%

1.9 92.05% 88.35%

2.0 92.72% 87.73%

4.0 96.85% 86.17%

16.0 99.52% 86.77%

Weight Decay  0.001 85.54% 79.77%
0.0012 89.13% 83.06%

0.0015 91.87% 72.36%

0.0018 94.25% 83.10%

0.002 94.72% 80.31%

0.003 96.64% 74.37%

0.004 97.38% 83.69%

0.006 98.40% 82.12%

C.4 Results on Uncorrupted Training Set

As expected, since the data is uncorrupted, interpolating the training data is the right decision in this setting, thus SGD
has the best test accuracy. Both RMD and weight decay approaches have higher test accuracy as A increases, with
RMD having superior performance. Note that this empirical observation again highlights the fact that as A — oo, RMD
reduces to SMD as shown in Appendix [A]
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Table 4: Comparison between RMD and the two baselines, (1) implicit regularization induced by SGD and (2) explicit
regularization through weight decay, for 0% corruption

Algorithm Lambda Training Accuracy Test Accuracy

SGD N/A 100% 92.81%
RMD 0.7 88.81% 84.99%
0.8 90.79% 86.71%

0.9 92.69% 87.86%

1.0 94.40% 88.92%

1.1 95.18% 88.98%

1.2 96.68% 89.23%

1.3 97.04% 90.27%

1.4 96.84% 89.31%

1.5 97.73% 90.27%

1.6 97.48% 90.39%

1.7 97.66% 90.54%

1.8 97.43% 90.77%

1.9 97.84% 90.06%

2.0 97.56% 90.34%

4.0 99.45% 91.0%

8.0 99.81% 91.35%

16.0 100% 92.35%

Weight Decay  0.001 95.31% 84.56%
0.0012 96.32% 76.13%

0.0015 97.22% 90.48%

0.0018 97.77% 90.96%

0.002 98.08% 89.01%

0.003 98.93% 91.08%

0.005 99.29% 91.62%
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