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Abstract

Driven by the empirical success and wide use of deep neural networks, understand-
ing the generalization performance of overparameterized models has become an
increasingly popular question. To this end, there has been substantial effort to
characterize the implicit bias of the optimization algorithms used, such as gradient
descent (GD), and the structural properties of their preferred solutions. This paper
answers an open question in this literature: For the classification setting, what
solution does mirror descent (MD) converge to? Specifically, motivated by its
efficient implementation, we consider the family of mirror descent algorithms with
potential function chosen as the p-th power of the `p-norm, which is an important
generalization of GD. We call this algorithm p-GD. For this family, we characterize
the solutions it obtains and show that it converges in direction to a generalized
maximum-margin solution with respect to the `p-norm for linearly separable classi-
fication. While the MD update rule is in general expensive to compute and perhaps
not suitable for deep learning, p-GD is fully parallelizable in the same manner as
SGD and can be used to train deep neural networks with virtually no additional
computational overhead. Using comprehensive experiments with both linear and
deep neural network models, we demonstrate that p-GD can noticeably affect the
structure and the generalization performance of the learned models.

1 Introduction

Overparameterized deep neural networks have enjoyed a tremendous amount of success in a wide
range of machine learning applications [Brown et al., 2020, Dosovitskiy et al., 2020, Ramesh et al.,
2021, Schrittwieser et al., 2020]. However, as these highly expressive models have the capacity to
have multiple solutions that interpolate training data, and not all these solutions perform well on test
data, it is important to characterize which of these interpolating solutions the optimization algorithms
converge to. Such characterization is important as it helps understand the generalization performance
of these models, which is one of the most fundamental questions in machine learning.

Notably, it has been observed that even in the absence of any explicit regularization, the interpolating
solutions obtained by the standard gradient-based optimization algorithms, such as (stochastic)
gradient descent, tend to generalize well. Recent research has highlighted that such algorithms favor
particular types of solutions, i.e., they implicitly regularize the learned models. Importantly, such
implicit biases are shown to play a crucial role in determining generalization performance, e.g.,
[Donhauser et al., 2022, Neyshabur et al., 2014, Wilson et al., 2017, Zhang et al., 2021].

In the literature, the implicit bias of first-order methods is first studied in linear settings since the
analysis is more tractable, and also, there have been several theoretical and empirical evidence that
certain insights from linear models translate to deep learning, e.g. [Allen-Zhu et al., 2019, Bartlett
et al., 2017, Belkin et al., 2019, Jacot et al., 2018, Lyu and Li, 2019, Nakkiran et al., 2021]. In the
linear setting, it is easier to establish implicit bias for regression tasks, where square loss is typically
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Table 1: Conceptual summary of our results. In the case of linear regression, the implicit regular-
ization results are complete; it is shown that mirror descent converges to the interpolating solution
that is closest to the initialization. However, such characterization in the classification setting is
missing in the literature and this is precisely the goal of this work. In particular, motivated by its
practical application, we consider the potential function ψ(·) = 1

p ‖·‖
p
p and extend the result of the

gradient descent to such mirror descents.

Regression Classification

Gradient Descent

(ψ(·) = 1
2 ‖·‖

2
2)

argminw ‖w − w0‖2 argminw ‖w‖2
s.t. w fits all data s.t. w classifies all data

[Engl et al., 1996, Thm 6.1]
Soudry et al. [2018]

Ji and Telgarsky [2019]

Mirror Descent

(e.g. ψ(·) = 1
p ‖·‖

p
p)

argminw ‖w − w0‖p argminw ‖w‖p
s.t. w fits all data s.t. w classifies all data

Gunasekar et al. [2018] This work
Azizan and Hassibi [2019a]

used and it attains its minimum at a finite value. For example, the implicit bias of gradient descent
(GD) for square loss goes back to Engl et al. [1996]. Beyond GD, analysis of other popular algorithms
such as the family of mirror descent (MD), which is an important generalization of GD, is more
involved and was established only recently by [Azizan and Hassibi, 2019a, Gunasekar et al., 2018].
Specifically, those works showed that mirror descent converges to the interpolating solution that
is closest to the initialization in terms of a Bregman divergence. Thus, the implicit bias in linear
regression is relatively well-understood by now.

On the other hand, in the classification setting, the implicit bias analysis becomes significantly
more challenging, and several questions remain open despite significant progress in the past few
years. A key differentiating factor in the classification setting is that the loss function does not attain
its minimum at a finite value, and the weights have to grow to infinity. It has been shown that for
the logistics loss, the gradient descent iterates converge to the `2-maximum margin SVM solution in
direction [Ji and Telgarsky, 2019, Soudry et al., 2018]. However, such characterizations for mirror
descent are missing in the literature. Because it is possible for optimization algorithms to exhibit
implicit bias in regression but not in classification (and vice versa) [Gunasekar et al., 2018], resolving
this gap of knowledge warrants careful analysis. See Table 1 for a summary.

In this paper, we advance the understanding of the implicit regularization of mirror descent in the
classification setting. In particular, inspired by their practicality, we focus on mirror descents with
potential function ψ(·) = 1

p ‖·‖
p
p for p > 1. More specifically, such choice of potential results in an

update rule that can be applied coordinate-wise, in the sense that updating the value at one coordinate
does not depend on the values at other coordinates. Thanks to this property, this subclass of mirror
descent can be implemented with no additional computational overhead, making it much more
practical than other algorithms in the literature; see Remark 10 for more details.

Our contributions. In this paper, we make the following contributions:

� We study mirror descent with potential 1
p ‖·‖

p
p for p > 1, which will call p-norm GD, and

abbreviated as p-GD, as a practical and efficient generalization of the popular gradient descent.
� We show that for separable linear classification with logistics loss, p-GD exhibits implicit regular-

ization by converging in direction to a “generalized” maximum-margin solution with respect to
the `p norm. More generally, we show that, for monotonically decreasing loss functions, p-GD
follows the so-called regularization path, which is defined in Section 2.

� We investigate the implications of our theoretical findings with two sets of experiments: Our
experiments involving linear models corroborate our theoretical results, and real-world experi-
ments with deep neural networks and popular datasets suggest that our findings carry over to such
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nonlinear settings. Our deep learning experiments further show that p-GD with different p lead to
significantly different generalization performance.

Additional related work. We remark that recent works also attempt to accelerate the convergence
of gradient descent to its implicit regularization, either by using an aggressive step size schedule
[Ji and Telgarsky, 2021, Nacson et al., 2019] or with momentum [Ji et al., 2021]. Further, there
have been several results for other optimization methods, including steepest descent, AdaBoost, and
various adaptive methods such as RMSProp and Adam [Gunasekar et al., 2018, Min et al., 2022,
Rosset et al., 2004, Telgarsky, 2013, Wang et al., 2021]. A mirror-descent-based algorithm for explicit
regularization was recently proposed by Azizan et al. [2021a]. Comparatively, there has been very
little progress on mirror descent in the classification setting. Li et al. [2021] consider a mirror descent,
but their assumptions are not applicable beyond the `2 geometry.1 To the best of our knowledge,
there is no result for more general mirror descent algorithms in the classification setting.

2 Background and Problem Setting

We are interested in the well-known classification setting. Consider a collection of input-label
pairs {(xi, yi)}ni=1 ⊂ Rd × {±1} and a classifier fw(x), where w ∈ W . For some loss function
` : R× {±1} → R, our goal is to minimize the empirical loss:

L(w) =
1

n

n∑
i=1

`(yi · fw(xi)).

Throughout the paper, we assume that the classification loss function ` is decreasing, convex and
does not attain its minimum, as in most common loss functions in practice (e.g., logistics loss and
exponential loss). Without loss of generality, we assume that inf `(·) = 0.

For our theoretical analysis, we consider a linear model, where the models can be expressed by
fw(x) = w>x and w ∈ Rd. We also make the following assumptions about the data. First, since
we are mainly interested in the over-parameterized setting where d > n, we assume that the data
is linearly separable, i.e., there exists w∗ ∈ Rd s.t. sign(〈w∗, xi〉) = yi for all i ∈ [n]. We also
assume that the inputs xi’s are bounded. More specifically, for our later purpose, we assume that for
p > 0, there exists some constant C so that maxi ‖xi‖q < C, where 1/q + 1/p = 1.

Preliminaries on mirror descent. The key component of mirror descent is a potential function. In
this work, we will focus on differentiable and strictly convex potentials defined on the entire domain
Rn.2 We call∇ψ the corresponding mirror map. Given a potential, the natural notion of “distance”
associated with the potential ψ is given by the Bregman divergence.
Definition 1 (Bregman divergence [Bregman, 1967]). For a mirror map ψ, the Bregman divergence
Dψ (·, ·) associated to ψ is defined as

Dψ (x, y) := ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 , ∀x, y ∈ Rn .

An important case is the potential ψ = ‖·‖2
2 , where ‖·‖ denotes the Euclidean norm. Then, the Breg-

man divergence becomes Dψ(x, y) = 1
2 ‖x− y‖

2. For more background on Bregman divergence
and its properties, see, e.g., [Bauschke et al., 2017, Section 2.2] and [Azizan and Hassibi, 2019b].

Mirror descent (MD) with respect to the mirror map ψ is a generalization of gradient descent where
we use Bregman divergence as a measure of distance:

wt+1 = argmin
w

{
1

η
Dψ(w,wt) + 〈∇L(wt), w〉

}
(MD)

Equivalently, MD can be written as∇ψ(wt+1) = ∇ψ(wt)− η∇L(wt). We refer readers to [Bubeck,
2015, Figure 4.1] for a nice illustration of mirror descent. Also, see [Juditsky et al., 2011, Section
5.7] for various examples of potentials depending on applications.

One property we will repeatedly use is the following [Azizan and Hassibi, 2019a]:
1To be precise, they assume that the Bregman divergence is lower and upper bounded by a constant factor of

the squared Euclidean distance, e.g., as in the case of a squared Mahalanobis distance.
2In general, the mirror map is a convex function of Legendre type (see, e.g., [Rockafellar, 1970, Section 26]).
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Lemma 2 (MD identity). For any w ∈ Rn, the following identities hold for MD:

Dψ(w,wt) = Dψ(w,wt+1) +Dψ−ηL(wt+1, wt) + ηDL(w,wt)− ηL(w) + ηL(wt+1) , (1a)
= Dψ(w,wt+1) +Dψ−ηL(wt+1, wt)− η 〈∇L(wt), w − wt〉 − ηL(wt) + ηL(wt+1) . (1b)

Using Lemma 2, we make several new observations and prove the following useful statements.
Lemma 3. For sufficiently small step size η such that ψ − ηL is convex, the loss is monotonically
decreasing after each iteration of MD, i.e., L(wt+1) ≤ L(wt).

Lemma 4. In a separable linear classification problem, if η is chosen sufficiently small s.t. ψ − ηL
is convex, then we have L(wt)→ 0 as t→∞. Hence, limt→∞ ‖wt‖ =∞ for any norm ‖·‖.

The formal proofs of these lemmas can be found in Appendix A.
Remark 5. We can relax the condition in Lemma 3 and 4 such that for a sufficiently small step size
η, ψ − ηL is only locally convex at the iterates wt. The relaxed condition allows us to analyze losses
such as the exponential loss (see, e.g. Footnote 2 of Soudry et al. [2018]). This condition can be
considered as the mirror descent counterpart to the standard smoothness assumption in the analysis
of gradient descent (see Lu et al. [2018]).

Preliminaries on the convergence of linear classifier. As we discussed above, the weights vector
wt diverges for mirror descent. Here the main theoretical question is:

What direction does MD diverge to? In other words, can we characterize wt/ ‖wt‖ as t→∞?

To answer this question, we define two special directions whose importance will be illustrated later.
Definition 6. The regularization path with respect to the `p-norm is defined as

w̄p(B) = argmin
‖w‖p≤B

L(w) (2)

And if the limit limB→∞ w̄p(B)/B exists, we call it the regularized direction and denote it by urp.

Definition 7. The margin γ of the a linear classifier w is defined as γ(w) = mini=1,...,n yi 〈xi, w〉 .
The max-margin direction with respect to the `p-norm is defined as:

ump := argmax
‖w‖p≤1

{
min

i=1,...,n
yi 〈xi, w〉

}
(3)

And let γ̂p be the optimal value to the equation above.

Note that ump is parallel to the hard-margin SVM solution w.r.t. `p-norm: argminw{‖w‖p : γ(w) ≥
1}. Also note that the superscripts in urp and ump are not variables and we only use this notation to
differentiate the two definitions. Prior results had shown that, in linear classification, gradient descent
converges in direction.
Theorem 8 (Soudry et al. [2018]). For separable linear classification with logistics loss, the gradient
descent iterates with sufficiently small step size converge in direction to um2 , i.e., limt→∞

wt

‖wt‖2
= um2 .

Theorem 9 (Ji et al. [2020]). If the regularized direction urp with respect to the `2-norm exists, then
the gradient descent iterates with sufficiently small step size converge to the regularized direction ur2,
i.e., limt→∞

wt

‖wt‖2
= ur2.

3 Mirror Descent with the p-th Power of `p-norm

In this section, we investigate theoretical properties of the main algorithm of interest, namely mirror
descent with ψ(·) = 1

p ‖·‖
p
p and for p > 1.3 We shall call this algorithm p-norm GD because it

naturally generalizes gradient descent to `p geometry, and for conciseness, we will refer to this
algorithm by the shorthand p-GD. As noticed by Azizan et al. [2021b], this choice of mirror potential

3Because the potential function must be strictly convex for Bregman divergence to be well-defined, the value
of p cannot be exactly 1.
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is particularly of practical interest because the mirror map ∇ψ updates becomes separable in
coordinates and thus can be implemented coordinate-wise independent of other coordinates:

∀j ∈ [d],

{
wt+1[j]←

∣∣w+
t [j]

∣∣ 1
p−1 · sign

(
w+
t [j]

)
w+
t [j] := |wt[j]|p−1sign(wt[j])− η∇L(wt)[j]

(p-GD)

Furthermore, we can extend upon the observation of Azizan et al. [2021b] and derive these identities
that allow us to better manipulate p-GD:

〈∇ψ(w), w〉 = sign(w1)w1 · |w1|p−1 + · · ·+ sign(wd)wd · |wd|p−1 = ‖w‖p (4a)

Dψ (cw, cw′) = |c|pDψ (w,w′) ∀c ∈ R. (4b)

Remark 10. Note that the coordinate-wise separability property is not shared among other related
algorithms in the literature. For instance, the choice ψ = 1

2 ‖·‖
2
q for 1/p+ 1/q = 1, which is referred

to as the p-norm algorithm [Gentile, 2003, Grove et al., 2001] is not fully coordinate-wise separable
since it requires computing ‖wt‖p at each step (see, e.g., [Gentile, 2003, eq. (1)]). Another related
algorithm is steepest descent, where the Bregman divergence in MD is replaced with ‖·‖2 for general
norm ‖·‖.4 However, for similar reasons, the update rule is not fully separable.

3.1 Main theoretical results

We extend Theorems 8 and 9 to the setting of p-GD. We will resolve two major obstacles in the
analysis of implicit regularization in linear classification:

� Our analysis approaches the classification setting as a limit of the regression implicit bias.
This argument gives stronger theoretical justification for utilizing the regularized direction (as
employed by Ji et al. [2020]) and partially addresses the concern from Gunasekar et al. [2018]
that the implicit bias of regression and classification problems are “fundamentally different.”

� On a more technical note, analyzing the implicit bias requires handling the cross terms of the form
〈∇ψ(w), w′〉, which lack direct geometric interpretations. We demonstrate that for our potential
functions of interest, these terms can be nicely written and can be handled in the analysis.

We begin with the motivation behind the regularized direction, and consider the regression setting in
which there exists some weight vector w such that L(w) = 0. Then, we can apply Lemma 2 to get

Dψ(w,wt) = Dψ(w,wt+1) +Dψ−ηL(wt+1, wt) + ηDL(w,wt) + η(L(wt+1)− L(w))

Since we assumed L(w) = 0, the equation above implies that Dψ(w,wt) ≥ Dψ(w,wt+1) for
sufficiently small step-size η. This can be interpreted as MD having a decreasing “potential” of the
from Dψ (w, ·) during each step. Using this property, Azizan and Hassibi [2019a] establishes the
implicit bias results of mirror descent in the regression setting.

However, such weight vector w does not exist in the classification setting. One natural workaround
would then be to choose a vector w so that L(w) ≤ L(wt) for all t ≤ T . The following result, which
is a generalization of [Ji et al., 2020, Lemma 9], shows that one can in fact choose the reference
vector w as a scalar multiple of the regularized direction.
Lemma 11. If the regularized direction urp exists, then ∀α > 0, there exists rα such that for any w
with ‖w‖p > rα, we have L((1 + α) ‖w‖p urp) ≤ L(w).

However, this does not resolve the issue altogether. Recall from Lemma 4 that the loss approaches 0,
and therefore one cannot choose a fixed reference vector w in the limit as T →∞. But due to the
homogeneity of Bregman divergence (4b), we can scale urp by a constant factor during each iteration,
and, by doing so, we choose the reference vector w to be a “moving target.” In other words, the idea
behind our analysis is that the classification problem is chasing after a regression one and would
behave similar to it in the limit. Let us formalize this idea. We begin with the following inequality:

Dψ

(
ctu

r
p, wt+1

)
≤ Dψ

(
ctu

r
p, wt

)
− ηL(wt+1) + ηL(wt), (5)

4It is also worth noting that steepest descent is not an instance of mirror descent since ‖·‖2 is not a Bregman
divergence for a general norm ‖·‖.
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where ct is taken to be ≈ ‖wt‖p.5

Now we modify (5) so that it can telescope over different iterations. One way is to add
Dψ

(
ct+1u

r
p, wt+1

)
on both sides of (5) and move Dψ

(
ctu

r
p, wt+1

)
to the right-hand side as follows:

Dψ

(
ct+1u

r
p, wt+1

)
≤ Dψ

(
ctu

r
p, wt

)
− ηL(wt+1) + ηL(wt) +Dψ

(
ct+1u

r
p, wt+1

)
−Dψ

(
ctu

r
p, wt+1

)
= Dψ

(
ctu

r
p, wt

)
− ηL(wt+1) + ηL(wt) + ψ(ct+1u

r
p)− ψ(ctu

r
p)−

〈
∇ψ(wt+1), (ct+1 − ct)urp

〉
Summing over t = 0, . . . , T − 1 gives us

Dψ

(
cTu

r
p, wT

)
≤ Dψ

(
c0u

r
p, w0

)
− ηL(w1) + ηL(wT ) + ψ(cTu

r
p)− ψ(c1u

r
p)

−
T−1∑
t=1

〈
∇ψ(wt+1), (ct+1 − ct)urp

〉 (6)

The rest of the argument deals with simplifying quantities that do not cancel under telescoping sum.
For instance, in order to deal with

〈
∇ψ(wt+1), urp

〉
, we invoke the MD update rule as follows〈

∇ψ(wt+1)−∇ψ(wt), u
r
p

〉
=
〈
−η∇L(wt), u

r
p

〉
& 〈−η∇L(wt), wt〉 ,

where the last inequality follows from the intuition that urp is the direction along which the loss
achieves the smallest value and hence ∇L(wt) must point away from urp, i.e., it must be that〈
∇L(wt), u

r
p

〉
. 〈∇L(wt), u〉 for any direction u. The following result formalizes this intuition.

Corollary 12. For w so that ‖w‖p > rα, we have 〈∇L(w), w〉 ≥ (1 + α) ‖w‖p
〈
∇L(w), urp

〉
.

Proof. This follows from the convexity of L and Lemma 11:
〈
∇L(w), w − (1 + α) ‖w‖urp)

〉
≥

L(w)− L((1 + α) ‖w‖urp) ≥ 0.

Now we are left with the terms 〈−η∇L(wt), wt〉. For general potential ψ, the quantity
〈−η∇L(wt), wt〉 = 〈∇ψ(wt+1)−∇ψ(wt), wt〉 cannot be simplified. On the other hand, due
to our choice of potential, one can invoke Lemma 2 to lower bound these quantities in terms of
‖wt+1‖p and ‖wt‖p, and this step is detailed in Lemma 18 in Appendix B.2. Once we have es-
tablished a lower bound on

〈
∇ψ(wt+1), urp

〉
, we can turn (6) entirely into a telescoping sum and

unwind the above process to show that Dψ

(
urp, wt/ ‖wt‖p

)
must converge to zero in the limit as

t→∞. Putting this all together, we obtain the following result.

Theorem 13. For a separable linear classification problem, if the regularized direction urp exists,
then with sufficiently small step size, the iterates of p-GD converge to urp in direction:

lim
t→∞

wt
‖wt‖p

= urp. (7)

A formal proof of this theorem can be found in Appendix B.3. We note that our proof further
simplifies derivations using the separability of the mirror map. The final missing piece would be the
existence of the regularized direction. In general, finding the limit direction urp would be difficult.
Fortunately, we can sometimes appeal to the max-margin direction that is much easier to compute.
The following result is a generalization of [Ji et al., 2020, Proposition 10] and shows that for common
losses in classification, the regularized direction and the max-margin direction are the same, hence
proving the existence of the former.

Proposition 14. If we have a loss with exponential tail, e.g. limz→∞ `(z)eaz = b, then the regular-
ized direction exists and it is equal to the max-margin direction ump .

The proof of this result can be found in Appendix B.5. Note that many commonly used losses in
classification, e.g., logistic loss, have exponential tail.

5To be more precise, we want ct = (1 + α) ‖wt‖p; and reason behind this choice is self-evident after we
present Corollary 12.
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Figure 1: An example of p-GD on randomly generated data with exponential loss and p = 1.5, 2, 3.
(1) The left plot is a scatter plot of the data: ×’s and •’s denote the two different labels (yi = ±1).
The dotted line is the `2 max-margin classifier. For clarity, other `p max-margin classifiers are omitted
from the plot. (2) The middle plot shows the rate which the quantity Dψ

(
urp, wt/ ‖wt‖t

)
converges

to 0. (3) The right plot shows how fast the p-norm of wt growths. We can observe that the asymptotic
behaviors of these plots are consistent with Corollary 17.

3.2 Asymptotic convergence rate

In this section, we characterize the rate of convergence in Theorem 13. Following the proof of
Theorem 13, one can show the following result in the case of linearly separable data.
Corollary 15. The following rate of convergence holds:

Dψ

(
urp,

wt
‖wt‖p

)
∈ O

(
‖wt‖−(p−1)p

)
.

In order to fully understand the convergence rate, we need to characterize the asymptotic behavior of
‖wt‖p. The next result precisely does that. Recall that we assumed the dataset is bounded so that
maxi ‖xi‖q ≤ C for 1/p+ 1/q = 1, and the max-margin direction ump satisfies

〈
xi, u

m
p

〉
≥ γ̂p ∀i ∈

[n]. Then, we have the following bound on ‖wt‖p.

Lemma 16. For exponential loss `(z) = exp(−z), the asymptotic growth of ‖wt‖p is contained in
Θ(log t). In particular, we have

lim inf
t→∞

‖wt‖p ≥
1

C
(log t− p log log t) +O(1) and lim sup

t→∞
‖wt‖p ≤ γ̂−1p

p

p− 1
log t.

The proof of this lemma can be found in Appendix C. Similar conclusions can be reached for other
losses with exponential tail. Therefore, in such cases, p-GD has poly-logarithmic rate of convergence.
Corollary 17. For exponential loss, we have convergence rate

Dψ

(
urp,

wt
‖wt‖p

)
∈ O

(
1

logp−1(t)

)
.

4 Experiments

In this section, we investigate the behavior and performance of p-GD for various values of p. We
naturally pick p = 2 that corresponds to gradient descent, Because p-GD does not directly support
p = 1 and∞, we choose p = 1.1 as a surrogate for `1, and p = 10 as a surrogate for `∞. We also
consider p = 1.5, 3, 6 to interpolate these points. This section will present a summary of our results;
the complete experimental setup and full results can be found in Appendices E and F.

4.1 Linear classification

Visualization of the convergence of p-GD. To visualize the results of Theorem 13 and Corollary 17,
we randomly generated a linearly separable set of 15 points in R2. We then employed p-GD on this
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dataset with exponential loss `(z) = exp(−z) and fixed step size η = 10−4. We ran this experiment
for p = 1.5, 2, 3 and for 106 iterations.

In the illustrations of Figure 1, the mirror descent iterates wt have unbounded norm and converge
in direction to ump . These results are consistent with Lemma 4 and with Theorem 13. Moreover, as
predicted by Corollary 17, the exact rate of convergence for Dψ

(
ump , wt/ ‖wt‖t

)
is poly-logarithmic

with respect to the number of iterations. Corollary 17 also indicates that the convergence rate would
be faster for larger p due to the larger exponent, and this is consistent with our observation in the
second plot of Figure 1. Finally, in the third plot of Figure 1, the norm of the iterates wt grows at a
logarithmic rate, which is the same as the prediction by Lemma 16.

Implicit bias of p-GD in linear classification. We now verify the conclusions of Theorem 13. To
this end, we recall that ump is parallel to the SVM solution argminw{‖w‖p : γ(w) ≥ 1}. Hence, we
can exploit the linearity and rescale any classifier so that its margin is equal to 1. If the prediction of
Theorem 13 holds, then for each fixed value of p, the classifier generated by p-GD should have the
smallest `p-norm after rescaling.

To ensure that ump are sufficiently different for different values of p, we simulate an over-parameterized
setting by randomly select 15 points in R100. We used fixed step size of 10−4 and ran 250 thousand
iterations for different p’s.

Table 2 shows the results for p = 1.1, 2, 3 and 10; under each norm, we highlight the smallest
classifier in boldface. Among the four classifiers we presented, p-GD with p = 1.1 has the smallest
`1.1-norm. And similar conclusions hold for p = 2, 3, 10. Although p-GD converges to ump at a
very slow rate, we are able to observe a very strong implicit bias of p-GD classifiers toward their
respective `p geometry in a highly over-parameterized setting. This suggests we should be able to
take advantage of the implicit regularization in practice and at a moderate computational cost. Due
to space constraints, we defer a more complete result with additional values of p to Appendix F.1.

Table 2: Size of the linear classifiers generated by
p-GD (after rescaling) in `1.1, `2, `3 and `10 norms.

`1.1 `2 `3 `10

p = 1.1 5.670 1.659 1.100 0.698
p = 2 6.447 1.273 0.710 0.393
p = 3 7.618 1.345 0.691 0.318
p = 10 9.086 1.520 0.742 0.281

4.2 Deep neural networks

Going beyond linear models, we now investigate
p-GD in deep-learning settings in its impact on
the structure of the learned model and potential
implications on the generalization performance.
As we had discussed in Section 3, the imple-
mentation of p-GD is straightforward; to il-
lustrate simplicity of implementation, we provide code snippets in Appendix D. Thus, we are able to
effectively experiment with the behaviors p-GD in neural network training. Specifically, we perform
a set of experiments on the CIFAR-10 dataset [Krizhevsky et al., 2009]. We use the stochastic version
of p-GD with different values of p. We choose a variety of networks: VGG [Simonyan and Zisserman,
2014], RESNET [He et al., 2016], MOBILENET [Sandler et al., 2018] and REGNET [Radosavovic
et al., 2020].

Implicit bias of p-GD in deep neural networks. Since the notion of margin is not well-defined in
this highly nonlinear setting, we instead visualize the impacts of p-GD’s implicit regularization on
the histogram of weights (in absolute value) in the trained model.

In Figure 2, we report the weight histograms of RESNET-18 models trained under p-GD with
p = 1.1, 2, 3 and 10. Depending on p, we observe interesting differences between the histograms.
Note that the deep network is most sparse when p = 1.1 as most weights clustered around 0.
Moreover, comparing the maximum weights, one can see that the case of p = 10 achieves the
smallest value. Another observation is that the network becomes denser as p increases; for instance,
there are more weights away from zero for the cases p = 3, 10. These overall tendencies are also
observed for other deep neural networks; see Appendix F.2.

Generalization performance. We next investigate the generalization performance of networks
trained with different p’s. To this end, we adopt a fixed selection of hyper-parameters and then
train four deep neural network models to 100% training accuracy with p-GD with different p’s. As
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Figure 2: The histogram of weights in RESNET-18 models trained with p-GD for the CIFAR-10
dataset. For clarity, we cropped out the tails and each plot has 100 bins after cropping. The trends of
these histograms reflect the implicit biases of p-GD: the distribution of p = 1.1 has the most number
of weights around zero; and the maximum weight is smallest when p = 10.

Table 3: CIFAR-10 test accuracy (%) of p-GD on various deep neural networks. For each deep
network and value of p, the average ± std. dev. over 5 trials are reported. And the best performing
value(s) of p for each individual deep network is highlighted in boldface.

VGG-11 RESNET-18 MOBILENET-V2 REGNETX-200MF

p = 1.1 88.19 ± .17 92.63 ± .12 91.16 ± .09 91.21 ± .18
p = 2 (SGD) 90.15 ± .16 93.90 ± .14 91.97 ± .10 92.75 ± .13
p = 3 90.85 ± .15 94.01 ± .13 93.23 ± .26 94.07 ± .12
p = 10 88.78 ± .37 93.55 ± .21 92.60 ± .22 92.97 ± .16

Table 3 shows, interestingly the networks trained by p-GD with p = 3 consistently outperform other
choices of p’s; notably, for MOBILENET and REGNET, the case of p = 3 outperforms the others
by more than 1%. Somewhat counter-intuitively, the sparser network trained by p-GD with p = 1.1
does not exhibit better generalization performance, but rather shows worse generalization than other
values of p. Although these observations are not directly predicted by our theoretical results, we
believe that they nevertheless establish an important step toward understanding generalization of
overparameterized models. Due to space limit, we defer other experimental results to Appendix F.3.

IMAGENET experiments. We also perform a similar set of experiments on the IMAGENET
dataset [Russakovsky et al., 2015], and these results can be found in Appendix F.4.

5 Conclusion and Future Work

In this paper, we establish an important step towards better understanding implicit bias in the
classification setting, by showing that p-GD converges in direction to the generalized regularized/max-
margin directions. We also run several experiments to corroborate our main findings along with the
practicality of p-GD. The experiments are conducted in various settings: (i) linear models in both low
and high dimensions, (ii) real-world data with highly over-parameterized nonlinear models.

We conclude this paper with several important future directions:
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� Our analysis holds for ψ(·) = ‖·‖pp, where we argued that this choice is key practical interest due
to its efficient algorithmic implementations. It is mathematically interesting to generalize our
analysis to other potential functions regardless of practical interest.

� As we discussed in Section 4.2, different choices of p’s for our p-GD algorithm result in different
generalization performance. It would be interesting to investigate this phenomenon and to develop
theory that explains why certain values of p lead to better generalization performance.

� Another interesting question is to further investigate how practical techniques used in training
neural networks (such as weight decay and adaptive learning rate) can affect the implicit bias and
generalization properties of p-GD.
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A Proofs for Section 2

A.1 Proof of Lemma 2

The following proof is adopted from [Azizan et al., 2021b]. We make several small modifications to
better fit the classification setting in this paper. In particular, in classification, there is no w ∈ Rd that
satisfies L(w) = 0.

Proof. We start with the definition of Bregman divergence:

Dψ (w,wt+1) = ψ(w)− ψ(wt+1)− 〈∇ψ(wt+1), w − wt+1〉 .
Now, we plugin the MD update rule ∇ψ(wt+1) = ∇ψ(wt)− η∇L(wt):

Dψ (w,wt+1) = ψ(w)− ψ(wt+1)− 〈∇ψ(wt), w − wt+1〉+ η 〈∇L(wt), w − wt+1〉 .
We again invoke the definition of Bregman divergence so that:

Dψ (w,wt+1) = ψ(w)− ψ(wt+1)− 〈∇ψ(wt+1), w − wt+1〉 ,
Dψ (wt+1, wt) = ψ(wt+1)− ψ(wt)− 〈∇ψ(wt), wt+1 − wt〉 .

It follows that

Dψ (w,wt+1) = ψ(w)− ψ(wt)− 〈∇ψ(wt), w − wt〉
+ 〈∇ψ(wt), wt+1 − wt〉 − ψ(wt+1) + ψ(wt)

+ η 〈∇L(wt), w − wt+1〉
= Dψ (w,wt)−Dψ (wt+1, wt) + η 〈∇L(wt), w − wt+1〉

(8)

Next, we consider the term 〈∇L(wt), w − wt−1〉:
〈∇L(wt), w − wt−1〉 = 〈∇L(wt), w − wt〉 − 〈∇L(wt), wt+1 − wt〉

+ L(wt+1)− L(wt)− L(wt+1) + L(wt)

= 〈∇L(wt), w − wt〉+DL(wt+1, wt)− L(wt+1) + L(wt),

(9)

where the last step holds because L is convex.

Combining (8) and (9) yields:

Dψ (w,wt)

= Dψ (w,wt+1) +Dψ (wt+1, wt)− η
(
〈∇L(wt), w − wt〉+DL(wt+1, wt)− L(wt+1) + L(wt)

)
= Dψ (w,wt+1) +Dψ−ηL (wt+1, wt)− η 〈∇L(wt), w − wt〉+ ηL(wt+1)− ηL(wt),

where in the last step, we note that Bregman divergence is additive in its potential. This gives
us (1b). And for (1a), we use the definition of Bregman divergence again, i.e. DL(w,wt) =
L(w)− L(wt)− 〈∇L(wt), w − wt〉:

Dψ (w,wt) = Dψ (w,wt+1) +Dψ−ηL (wt+1, wt)− η 〈∇L(wt), w − wt〉
+ ηL(w)− ηL(wt) + ηL(wt+1)− ηL(w)

= Dψ (w,wt+1) +Dψ−ηL (wt+1, wt) + ηDL(w,wt)− ηL(w) + ηL(wt+1)

A.2 Proof of Lemma 3

Proof. This is an application of Lemma 2 with w = wt:

0 = Dψ(wt, wt+1) +Dψ−ηL(wt+1, wt)− ηL(wt) + ηL(wt+1)

=⇒ ηL(wt) = Dψ(wt, wt+1) +Dψ−ηL(wt+1, wt) + ηL(wt+1) ≥ ηL(wt+1)

where we used the fact that Bregman divergence with a convex potential function is non-negative.
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A.3 Proof of Lemma 4

Proof. By Lemma 3, L(wt) is decreasing with respect to t, therefore the limit exists. Suppose the
contrary that limt→∞ L(wt) = ε > 0. Since the data is separable, we can pick w so that L(w) ≤ ε/2.
Applying Lemma 2, the following holds for all t:

Dψ(w,wt+1) = Dψ(w,wt)−Dψ−ηL(wt+1, wt)− ηDL(w,wt) + ηL(w)− ηL(wt+1)

≤ Dψ(w,wt) + ηε/2− ηε = Dψ(w,wt)− ηε/2
Hence, Dψ(w,wt) ≤ Dψ(w,w0) − tηε/2. This implies that lim supt→∞Dψ(w,wt) = −∞,
contradiction.

B Proofs for Section 3

B.1 Proof of Lemma 11

Proof. Let γ̄ be the margin of urp. Under separability, we know γ̄ > 0. Recall the definition of the
regularization path. There exists sufficiently large rα so that∥∥∥∥∥ w̄p(‖w‖p)‖w‖p

− urp

∥∥∥∥∥
p

≤ αγ̄

C

whenever ‖w‖p ≥ rα. Recall the definition that C = maxi=1,...,n ‖xi‖q , 1/p+ 1/q = 1. Then, for
all i ∈ [n], we have

yi

〈
w̄(‖w‖p), xi

〉
= yi

〈
w̄(‖w‖p)− ‖w‖p urp, xi

〉
+ yi

〈
‖w‖p urp, xi

〉
≤ αγ̄ ‖w‖p ‖xi‖q /C + yi

〈
‖w‖p urp, xi

〉
≤ αγ̄ ‖w‖p + yi

〈
‖w‖p urp, xi

〉
≤ yi

〈
(1 + α) ‖w‖p urp, xi

〉
Since the loss L is decreasing, we have

L((1 + α) ‖w‖p urp) ≤ L(w̄(‖w‖p)) ≤ L(w).

B.2 Lower bounding the mirror descent updates

Lemma 18. For ψ(·) = 1
p ‖·‖

p
p with p > 1, the mirror descent update satisfies the following

inequality:
p− 1

p
‖wt+1‖pp −

p− 1

p
‖wt‖pp + ηL(wt+1)− ηL(wt) ≤ 〈−η∇L(wt), wt〉 (10)

Proof. This result follows from Lemma 2 with w = 0:

Dψ (0, wt) = Dψ (0, wt+1) +Dψ−ηL (wt+1, wt) + ηDL (0, wt) + ηL(wt+1)− ηL(0)

≥ Dψ (0, wt+1) + ηDL (0, wt) + ηL(wt+1)− ηL(0)

= Dψ (0, wt+1) + η(L(0)− L(wt)− 〈∇L(wt), − wt〉) + ηL(wt+1)− ηL(0)

= Dψ (0, wt+1) + η 〈∇L(wt), wt〉+ ηL(wt+1)− ηL(wt)

Rearranging the terms yields

Dψ (0, wt+1)−Dψ (0, wt) + ηL(wt+1)− ηL(wt) ≤ 〈−η∇L(wt), wt〉
We conclude the proof by noting that for any w ∈ Rd,

Dψ (0, w) = ψ(0)− ψ(w)− 〈∇ψ(w), − w〉 = 〈∇ψ(w), w〉 − ψ(w) =
p− 1

p
‖w‖pp
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B.3 Proof of Theorem 13

Proof. Consider arbitrary α ∈ (0, 1) and define rα according to Lemma 11. Since limt→∞ ‖wt‖p =

∞, we can find t0 so that ‖wt‖p > max(1, rα) for all t ≥ t0. Let ct = (1 + α) ‖wt‖p.

We list some properties about ψ(·) = 1
p ‖·‖

p
p that will be useful in our analysis:

∇ψ(w) = (sign(w1)|w1|p−1, · · · , sign(wd)|wd|p−1)

〈∇ψ(w), w〉 = sign(w1)w1|w1|p−1 + · · ·+ sign(wd)wd|wd|p−1 = ‖w‖pp
‖∇ψ(w)‖q = ‖w‖p−1p , for 1/p+ 1/q = 1

Dψ (cw, cw′) = |c|pDψ (w,w′) ∀c ∈ R.

Substitute w = ctu
r
p into Lemma 2, we get

Dψ

(
ctu

r
p, wt+1

)
≤ Dψ

(
ctu

r
p, wt

)
+ η

〈
∇L(wt), ctu

r
p − wt

〉
− ηL(wt+1) + ηL(wt).

By Corollary 12, we have
〈
∇L(wt), ctu

r
p − wt

〉
≤ 0. Therefore,

Dψ

(
ctu

r
p, wt+1

)
≤ Dψ

(
ctu

r
p, wt

)
− ηL(wt+1) + ηL(wt).

It follows that

Dψ

(
ct+1u

r
p, wt+1

)
≤ Dψ

(
ctu

r
p, wt

)
− ηL(wt+1) + ηL(wt) +Dψ

(
ct+1u

r
p, wt+1

)
−Dψ

(
ctu

r
p, wt+1

)
= Dψ

(
ctu

r
p, wt

)
− ηL(wt+1) + ηL(wt) + ψ(ct+1u

r
p)− ψ(ctu

r
p)−

〈
∇ψ(wt+1), (ct+1 − ct)urp

〉
Summing over t = t0, . . . , T − 1 gives us

Dψ

(
cTu

r
p, wT

)
≤ Dψ

(
ct0u

r
p, wt0

)
− ηL(wt0) + ηL(wT ) + ψ(cTu

r
p)− ψ(ct0u

r
p)

−
T−1∑
t=t0

〈
∇ψ(wt+1), (ct+1 − ct)urp

〉
(11)

Now we want to establish a lower bound on the last term of (11). To do so, we inspect the change in
∇ψ(wt) from each successive mirror descent update:〈

∇ψ(wt+1)−∇ψ(wt), u
r
p

〉
(12a)

=
〈
−η∇L(wt), u

r
p

〉
(12b)

≥ 1

(1 + α) ‖wt‖p
〈−η∇L(wt), wt〉 (12c)

≥ 1

(1 + α) ‖wt‖p

(
p− 1

p
‖wt+1‖pp −

p− 1

p
‖wt‖pp + ηL(wt+1)− ηL(wt)

)
(12d)

≥ 1

(1 + α) ‖wt‖p

(
p− 1

p
‖wt+1‖pp −

p− 1

p
‖wt‖pp

)
+ ηL(wt+1)− ηL(wt) (12e)

where we applied Corollary 12 on (12c) and Lemma 18 on (12d).

Now we bound (12e). We claim the following identity and defer its derivation to Section B.4.

p− 1

p
(‖wt+1‖pp − ‖wt‖

p
p) ≥ (‖wt+1‖p−1p − ‖wt‖p−1p ) ‖wt‖p . (13)

We are left with〈
∇ψ(wt+1)−∇ψ(wt), u

r
p

〉
≥
‖wt+1‖p−1p − ‖wt‖p−1p

1 + α
+ ηL(wt+1)− ηL(wt).
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Summing over t = t0, . . . , T − 1 gives us

〈
∇ψ(wT )−∇ψ(wt0), urp

〉
≥
‖wT ‖p−1p − ‖wt0‖p−1p

1 + α
+ ηL(wT )− ηL(wt0). (14)

With (14), we can bound the last term of (11) as follows:

T−1∑
t=t0

〈
∇ψ(wt+1), (ct+1 − ct)urp

〉
≥

T∑
t=t0+1

‖wt‖p−1p +O(1)

1 + α
(ct − ct−1)

=

T∑
t=t0+1

(‖wt‖p−1p +O(1))(‖wt‖p − ‖wt−1‖p)

≥
T∑

t=t0+1

1

p
(‖wt‖pp − ‖wt−1‖

p
p) +O(1) · (‖wT ‖p − ‖wt0‖p)

=
1

p
‖wT ‖pp +O(‖wT ‖p) (15)

where we defer the computation on the last inequality to Section B.4.

We now apply the inequality in (15) to (11). Note that ψ(cTu
r
p) = 1

p (1 + α)p ‖wT ‖pp. We now have
the following:

Dψ

(
(1 + α) ‖wT ‖p urp, wT

)
≤ 1

p
‖wT ‖pp ((1 + α)p − 1) +O(‖wT ‖p).

After applying homogeneity of Bregman divergence, and recalling that α = ε
1−ε , we have

Dψ

(
urp, (1− ε)

wT
‖wT ‖p

)
≤

1
p ‖wT ‖

p
p (1− (1− ε)p)
‖wT ‖pp

+ o(1).

Let w̃T = wT

‖wT ‖p
. We note that Bregman divergence in fact satisfies the law of cosines:

Lemma 19 (Law of Cosines).

Dψ (w,w′) = Dψ (w,w′′) +Dψ (w′′, w′)− 〈∇ψ(w′)−∇ψ(w′′), w − w′′〉

Therefore,

Dψ

(
urp, w̃T

)
≤

1
p ‖wT ‖

p
p (1− (1− ε)p)
‖wT ‖pp

+Dψ ((1− ε)w̃T , w̃T )

−
〈
∇ψ(w̃T )−∇ψ((1− ε)w̃T ), urp − (1− ε)w̃T

〉
+ o(1)

≤ 1

p
(1− (1− ε)p) +

1

p
((1− ε)p − 1) + ε+ 2d1/p(1− (1− ε)p) + o(1)

(16)

And we defer the computation for the last inequality to Section B.4. Taking the limit as T →∞ and
ε→ 0, we have that

lim sup
T→∞

Dψ

(
urp,

wT
‖wT ‖p

)
≤ ε+ 2d1/p(1− (1− ε)p) (17)

Note that the RHS vanishes in the limit as ε → 0. Since the choice of ε is arbitrary, we have
wT / ‖wT ‖p → urp as T →∞.
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B.4 Auxiliary Computation for Section B.3

To show (13), we claim that for δ ≥ −1 and p > 1, we have

p− 1

p
((1 + δ)p − 1) ≥ (1 + δ)p−1 − 1.

Note that we equality when δ = 0, and now we consider the first derivative:

d

dδ

{
p− 1

p
((1 + δ)p − 1)− (1 + δ)p−1 + 1

}
= (p− 1)δ(1 + δ)p−2,

which is negative when δ ∈ [−1, 0) and positive when δ > 0, so this identity holds. Now, (13)
follows from setting δ = (‖wt+1‖p − ‖wt‖p)/ ‖wt‖p and then multiplying by ‖wt‖pp on both sides.

To finish showing (15), we claim that for δ ≥ −1 and p > 1, we have

1

p
((1 + δ)p − 1) ≤ δ(1 + δ)p−1.

Note that we equality when δ = 0, and now we consider the first derivative:

d

dδ

{
1

p
((1 + δ)p − 1)− δ(1 + δ)p−1

}
= −(p− 1)δ(1 + δ)p−2,

which is positive when δ ∈ [−1, 0) and negative when δ > 0, so this identity holds. Now, the last
inequality of (15) follows by setting δ = (‖wt‖p − ‖wt−1‖p)/ ‖wt−1‖p and then multiply by ‖wt‖pp
on both sides.

Finally, we simplify the RHS of (16) by taking advantage of the fact that w̃T is normalized:

Dψ ((1− ε)w̃T , w̃T ) = (1− ε)pψ(w̃T )− ψ(w̃T ) + 〈∇ψ(w̃T ), εw̃T 〉

=
1

p
((1− ε)p − 1) + ε

∣∣〈∇ψ(w̃T )−∇ψ((1− ε)w̃T ), urp − (1− ε)w̃T
〉∣∣

=
∣∣〈(1− (1− ε)p)∇ψ(w̃T ), urp − (1− ε)w̃T

〉∣∣
≤ (1− (1− ε)p) ‖∇ψ(w̃T )‖q ·

∥∥urp − (1− ε)w̃T
∥∥
p

= (1− (1− ε)p) ‖w̃T ‖p−1p ·
∥∥urp − (1− ε)w̃T

∥∥
p

≤ 2d1/p(1− (1− ε)p)

B.5 Proof of Theorem 14

Proof. We first show that ump is unique. Suppose the contrary that there are two distinct unit p-norm
vectors u1 6= u2 both achieving the maximum-margin γ̂p. Then u3 = (u1 + u2)/2 satisfies

∀i, yi 〈u3, xi〉 =
1

2
yi 〈u1, xi〉+

1

2
yi 〈u2, xi〉 ≥ γ̂p

Therefore, u3 has margin of at least γ̂p. Since ‖·‖p is strictly convex, we must have ‖u3‖p < 1.
Therefore, the margin of u3/ ‖u3‖p is strictly greater than γ̂p, contradiction.

Define β > 0 so that `(z)eaz ∈ [b/2, 2b] for z = Bγ̂p/2 and whenever B > β. Note that

L(Bump ) =

n∑
i=1

`(yi
〈
Bump , xi

〉
) ≤ n · `(Bγ̂p) ≤ 2bn · exp(−aBγ̂p)

Suppose the contrary that the regularized direction does not converge to ump , then there must exist
γ̂p/2 > ε > 0 so that there are arbitrarily large values of B satisfying

min
i=1,...,n

yi

〈
w̄(B)

B
, xi

〉
≤ γ̂p − ε.
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And this implies

L(w̄(B)) ≥ `(B(γ̂p − ε)) ≥
b

2
exp(−aBγ̂p) exp(aBε)

Then, for sufficiently large B > β, we have exp(aBε) > 4n⇒ L(w̄(B)) > L(Bump ), contradiction.
Therefore, the regularized direction exists and urp = ump .

B.6 Simpler proof of Theorem 13

For potential function ψ(·) = 1
p ‖·‖

p
p, we can avoid most calculations involving (11) by directly

computing for Bregman divergence. However, we want to note that this approach is less general, and
does not highlight the role of urp as clearly.

Proof. Consider arbitrary α ∈ (0, 1). Since limt→∞ ‖wt‖p = ∞, we can find t0 so that ‖wt‖ >
max(1, rα) for all t ≥ t0. For T > t0, define w̃T = wT

‖wT ‖p
.

We can perform the following manipulation on Bregman divergence:

Dψ

(
urp, w̃T

)
= ψ(urp)− ψ (w̃T )−

〈
∇ψ (w̃T ) , urp − w̃T

〉
= ψ(urp)− ψ (w̃T ) + 〈∇ψ(w̃T ), w̃T 〉 −

〈
∇ψ(w̃T ), urp

〉
=

1

p

∥∥urp∥∥pp − 1

p
‖w̃T ‖pp + ‖w̃T ‖pp −

〈
∇ψ(w̃T ), urp

〉
= 1−

〈
∇ψ(w̃T ), urp

〉
(18)

We divide both sides of (14) by ‖wT ‖ and then taking the limit as T →∞ yields

lim inf
T→∞

1

‖wT ‖p−1p

〈
∇ψ(wT ), urp

〉
≥ 1

1 + α
. (19)

Now, substituting (19) into (18) results in

lim sup
T→∞

Dψ

(
urp,

wT
‖wT ‖p

)
= 1− lim inf

T→∞

〈
∇ψ

(
wT
‖wT ‖p

)
, urp

〉

= 1− lim inf
T→∞

1

‖wT ‖p−1p

〈
∇ψ(wT ), urp

〉
≤ 1− 1

1 + α
< α

Since the value of α is arbitrary, we can conclude that

lim
T→∞

Dψ

(
urp,

wT
‖wT ‖p

)
= 0.

C Proofs for Section 3.2

C.1 Proof of Corollary 15

Proof. This is an immediate consequence of (18) and (19).

C.2 Proof of Lemma 16

For the following proof, we assume without loss of generality that yi = 1 by replacing every instance
of (xi,−1) with (−xi, 1).
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Proof. For the upper bound, we consider a reference vector w? = γ̂−1p ump . By the definition of the
max-margin direction, the margin of w? is 1 and ‖w?‖p = γ̂−1p . From Lemma 2, we have

Dψ(w? log T,wt) = Dψ(w? log T,wt+1) +Dψ−ηL(wt+1, wt)− 〈∇L(wt), w
? log T − wt〉

− ηL(wt) + ηL(wt+1).

We first bound the quantity 〈∇L(wt), w
? log T − wt〉 by expanding the definition of exponential

loss:

〈∇L(wt), w
? log T − wt〉

=

n∑
i=1

〈∇ exp(−〈wt, xi〉), w? log T − wt〉

=

n∑
i=1

〈exp(−〈wt, xi〉)xi, wt − w? log T 〉

=

n∑
i=1

exp(−〈w? log T, xi〉) exp(−〈wt − w? log T, xi〉) 〈xi, wt − w? log T 〉

≤
n∑
i=1

1

T
· 1

e
=

n

eT

where the last line follows from the definition of w? and the fact that for any x ∈ R, we have
e−xx ≤ 1/e. It follows that

Dψ(w? log T,wt) ≥ Dψ(w? log T,wt+1)− n

eT
− ηL(wt) + ηL(wt+1).

Summing over t = 0, . . . , T − 1 gives us

Dψ(w? log T,w0) ≥ Dψ(w? log T,wT )− n

e
− ηL(w0) + ηL(wT ).

Since Bregman divergence with respect to the pth power of `p-norm is homogeneous, we can divide
by a factor of logp T on both sides:

Dψ

(
w?,

w0

log T

)
≥ Dψ

(
w?,

wT
log T

)
− o(1). (20)

As T →∞, the left-hand side converges to Dψ (w?, 0) = ψ(w?) = 1
p γ̂
−p
p . Let w̃ = wT / log T , we

expand the right-hand side as

Dψ (w?, w̃) = ψ(w?)− ψ(w̃)− 〈∇ψ(w̃), w? − w̃〉

=
1

p
γ̂−pp +

p− 1

p
‖w̃‖pp − 〈∇ψ(w̃), w?〉

≥ 1

p
γ̂−pp +

p− 1

p
‖w̃‖pp − γ̂−1p ‖∇ψ(w̃)‖q

for 1/p+ 1/q = 1. Recall that ψ = 1
p ‖·‖

p
p has the following nice properties:

∇ψ(w) = (sign(w1)|w1|p−1, · · · , sign(wd)|wd|p−1)

〈∇ψ(w), w〉 = sign(w1)w1|w1|p−1 + · · ·+ sign(wd)wd|wd|p−1 = ‖w‖pp
So, we can further simplify ‖∇ψ(w̃)‖q:

‖∇ψ(w̃)‖q =

(
d∑
i=1

|w̃i|(p−1)q
)1/q

=

(
d∑
i=1

|w̃i|p
)1/q

= ‖w̃‖p/qp = ‖w̃‖p−1p ,
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where we note that because 1/p+ 1/q = 1, we also have pq = p+ q and 1 + p/q = p.

Now, we have

Dψ (w?, w̃) ≥ 1

p
γ̂−pp +

p− 1

p
‖w̃‖pp − γ̂−1p ‖w̃‖

p−1
p

If ‖wT / log T‖p > γ̂−1p · p
p−1 for arbitrarily large T , then Dψ (w?, wT / log T ) > 1

p γ̂
−p
p for those T .

This in turn contradicts inequality (20). Therefore, we must have

lim sup
T→∞

‖wT ‖p ≤ γ̂−1p
p

p− 1
log T.

Now we can turn our attention to the lower bound. Let mt = γ(wt) be the margin of the mirror
descent iterates. Then,

L(wt) =
1

n

n∑
i=1

exp(−〈wt, xi〉) ≥
1

n
exp(−mt).

Due to Lemma 4, we also know that mt
t→∞−−−→∞.

By the definition of the max-margin direction, we know that γ(‖wt‖p ump ) ≥ mt. Then by linearity
of margin, there exists w? so that γ(w?) ≥ (1 + 2n

mt
)mt and ‖w?‖p ≤ (1 + 2n

mt
) ‖wt‖p. It follows

that

L(w?) =
1

n

n∑
i=1

exp(−〈wt, xi〉) ≤ exp(−γ(w?)) =
1

2n
exp(−mt).

Under the assumption that the step size η is sufficiently small so that ψ− ηL is convex on the iterates,
we can apply the convergence rate of mirror descent [Lu et al., 2018, Theorem 3.1]:

L(wt)− L(w?) ≤ 1

ηt
Dψ (w?, w0)

From our choice of w?, we have

1

2n
exp(−mt) ≤

1

ηt
Dψ (w?, w0)

=
1

ηt
(ψ(w?)− ψ(w0)− 〈∇ψ(w0), w? − w0〉)

After dropping the lower order terms and recall the upper bounds on ‖w?‖p and ‖wt‖p, we have

1

2n
exp(−mt) ≤ O(1) · 1

ηt
· 1

p

(
1 +

log(2n)

mt

)p(
γ̂−1p

p

p− 1
log t

)p
Since mt is unbounded, the quantity 1+ log(2n)

mt
is upper bounded by a constant. Taking the logarithm

on both sides yields
mt ≥ log t− p log log t+O(1)

Finally, we use the definition of margin to conclude that mt ≤ 〈wt, xi〉 ≤ C · ‖wt‖p. Therefore,

‖wt‖p ≥
1

C
(log t− p log log t) +O(1).
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D Practicality of p-GD

To illustrate that p-GD can be easily implemented, we show a proof-of-concept implementation in
PyTorch. This implementation can directly replace existing optimizers and thus require only minor
changes to any existing training code.

We also note that while the p-GD update step requires more arithmetic operations than a standard
gradient descent update, this does not significantly impact the total runtime because differentiation is
the most computationally intense step. We observed from our experiments that training with p-GD is
approximate 10% slower than with PyTorch’s optim.SGD (in the same number of epochs),6 and we
believe that this gap can be closed with a more optimized code.

Listing 1: Sample PyTorch implementation of p-GD

1 import torch
2 from torch.optim import Optimizer
3

4 class pnormSGD(Optimizer):
5 def __init__(self , params , lr=0.01 , pnorm =2.0):
6 if not 0.0 <= lr:
7 raise ValueError("Invalid learning rate: {}".format(lr))
8 # p-norm must be strictly greater than 1
9 if not 1.01 <= pnorm:

10 raise ValueError("Invalid p-norm value: {}".format(pnorm))
11

12 defaults = dict(lr=lr , pnorm=pnorm)
13 super(pnormSGD , self).__init__(params , defaults)
14

15 def __setstate__(self , state):
16 super(pnormSGD , self).__setstate__(state)
17

18 def step(self , closure=None):
19 loss = None
20 if closure is not None:
21 with torch.enable_grad ():
22 loss = closure ()
23

24 for group in self.param_groups:
25 lr = group["lr"]
26 pnorm = group["pnorm"]
27

28 for param in group["params"]:
29 if param.grad is None:
30 continue
31

32 x = param.data
33 dx = param.grad.data
34

35 # \ell_p^p potential function
36 update = torch.pow(torch.abs(x), pnorm -1) * \
37 torch.sign(x) - lr * dx
38 param.data = torch.sign(update) * \
39 torch.pow(torch.abs(update), 1/(pnorm -1))
40

41 return loss

6This measurement may not be very accurate because we were using shared computing resources.
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E Experimental details

E.1 Linear classification

Here, we describe the details behind our experiments from Section 4.1. First, we note that we can
absorb the labels yi by replacing (xi, yi) with (yixi, 1). This way, we can choose points with the
same +1 label.

For the R2 experiment, we first select three points ( 1
6 ,

1
2 ), ( 1

2 ,
1
6 ) and ( 1

3 ,
1
3 ) so that the maxi-

mum margin direction is approximately 1√
2
(1, 1). Then we sample 12 additional points from

N (( 1
2 ,

1
2 ), 0.15I2). The initial weight w0 is selected from N (0, I2). We ran p-GD with step size

10−4 for 1 million steps. As for the scatter plot of the data, we randomly re-assign a label and plot
out (xi, 1) or (−xi,−1) uniformly at random.

For the R100 experiment, we select 15 sparse vectors that each has up to 10 nonzero entries. Each
nonzero entry is independently sampled from U(−2, 4). Because we are in the over-parameterized
case, these vectors are linearly separable with high probability. The initial weight w0 is selected from
N (0, 0.1I100). We ran p-GD with step size 10−4 for 1 million steps.

These experiments were performed on an Intel Skylake CPU.

E.2 CIFAR-10 experiments

For the experiments with the CIFAR-10 dataset, we adopted the example implementation from the
FFCV library.7 For consistency, we ran p-GD with the same hyper-parameters for all neural networks
and values of p. We used a cyclic learning rate schedule with maximum learning rate of 0.1 and ran
for 400 epochs so the training loss is approximately 0.8

This experiment was performed on a single Nvidia V100 GPU.

E.3 ImageNet experiments

For the experiments with the ImageNet dataset, we used the example implementation from the FFCV
library.9 For consistency, we ran p-GD with the same hyper-parameters for all neural networks and
values of p. We used a cyclic learning rate schedule with maximum learning rate of 0.5 and ran for
120 epochs. Note that, to more accurately measure the effect of p-GD on generalization, we turned
off any parameters that may affect regularization, e.g. with momentum set to 0, weight decay set to 0,
and label smoothing set to 0, etc.

This experiment was performed on a single Nvidia V100 GPU.

F Additional experimental results

F.1 Linear classification

We present a more complete result for the setting of Section 4.1 with more values of p. Note that
Table 2 is a subset of Table 4, as shown below.

Except for p = 1.1, p-GD produces the smallest linear classifier under the corresponding `p-norm
and thus consistent with the prediction of Theorem 13. When p = 1.1, Corollary 17 predicts a much
slower convergence rate. So, for the number of iterations we have, p-GD with p = 1.1 in fact cannot
compete against p-GD with p = 1.5, which has much faster convergence rate but similar implicit bias.
The second trial shows a rare case where p-GD with p = 1.1 could not even match p-GD with p = 2
under the `1.1-norm. Therefore, before we come up with techniques to speed up the convergence of
p-GD, it is not advisable to pick p that is too close to 1.

7https://github.com/libffcv/ffcv/tree/main/examples/cifar
8This differs from the setup from Azizan et al. [2021b], where they used a fixed small learning rate and much

larger number of epochs.
9https://github.com/libffcv/ffcv-imagenet/
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Table 4: Size of the linear classifiers generated by p-GD (after rescaling) in `1, `1.1, `1.5, `2, `3, `6
and `10 norms. For each norm, we highlight the value of p for which p-GD generates the smallest
classifier under that norm. (Trial 1)

`1 norm `1.1 norm `1.5 norm `2 norm `3 norm `6 norm `10 norm `∞ norm
p = 1.1 7.692 5.670 2.650 1.659 1.100 0.782 0.698 0.634
p = 1.5 7.924 5.607 2.333 1.346 0.830 0.573 0.526 0.515
p = 2 9.417 6.447 2.413 1.273 0.710 0.444 0.393 0.374
p = 3 11.307 7.618 2.696 1.345 0.691 0.381 0.318 0.285
p = 6 13.115 8.787 3.044 1.481 0.729 0.369 0.288 0.233
p = 10 13.572 9.086 3.137 1.520 0.742 0.367 0.281 0.213

Table 5: Size of the linear classifiers generated by p-GD (after rescaling) in `1, `1.1, `1.5, `2, `3, `6
and `10 norms. For each norm, we highlight the value of p for which p-GD generates the smallest
classifier under that norm. (Trial 2)

`1 norm `1.1 norm `1.5 norm `2 norm `3 norm `6 norm `10 norm `∞ norm
p = 1.1 10.688 8.013 3.883 2.465 1.644 1.187 1.082 1.009
p = 1.5 9.308 6.546 2.674 1.518 0.913 0.602 0.535 0.488
p = 2 10.735 7.340 2.735 1.435 0.790 0.479 0.418 0.397
p = 3 12.298 8.327 2.991 1.508 0.782 0.432 0.359 0.324
p = 6 13.817 9.322 3.297 1.631 0.816 0.418 0.328 0.265
p = 10 14.545 9.798 3.447 1.695 0.841 0.423 0.325 0.247
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F.2 CIFAR-10 experiments: implicit bias

We present more complete illustrations of the implicit bias trends of trained models in CIFAR-10.
Compared to Figure 2, the plots below include data from additional values for additional values of p
and more deep neural network architectures.

We see that the trends we observed in Section 4.2 continue to hold under architectures other than
RESNET. In particular, for smaller p’s, the weight distributions of models trained with p-GD have
higher peak around zero, and higher p’s result in smaller maximum weights.
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Figure 3: The histogram of weights in RESNET-18 models trained with p-GD for the CIFAR-10
dataset. For clarity, we cropped out the tails and each plot has 100 bins after cropping. Note that the
scale on the y-axis differs per graph.
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Figure 4: The histogram of weights in MOBILENET-V2 models trained with p-GD for the CIFAR-10
dataset. For clarity, we cropped out the tails and each plot has 100 bins after cropping.
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Figure 5: The histogram of weights in REGNETX-200MF models trained with p-GD for the CIFAR-
10 dataset. For clarity, we cropped out the tails and each plot has 100 bins after cropping.
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Figure 6: The histogram of weights in VGG-11 models trained with p-GD for the CIFAR-10 dataset.
For clarity, we cropped out the tails and each plot has 100 bins after cropping.
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F.3 CIFAR-10 experiments: generalization

We present a more complete result for the CIFAR-10 generalization experiment in Section 4.2 with
additional values of p.

In the following table, we see that p-GD with p = 3 continues have the highest generalization
performance for all deep neural networks.

Table 6: CIFAR-10 test accuracy (%) of p-GD on various deep neural networks. For each deep net
and value of p, the average ± std. dev. over 5 trials are reported. And the best performing value(s) of
p for each individual deep net is highlighted in boldface.

VGG-11 RESNET-18 MOBILENET-V2 REGNETX-200MF

p = 1.1 88.19 ± .17 92.63 ± .12 91.16 ± .09 91.21 ± .18
p = 1.5 88.45 ± .29 92.73 ± .11 90.81 ± .19 90.91 ± .12
p = 2 (SGD) 90.15 ± .16 93.90 ± .14 91.97 ± .10 92.75 ± .13
p = 3 90.85 ± .15 94.01 ± .13 93.23 ± .26 94.07 ± .12
p = 6 89.47 ± .14 93.87 ± .13 92.84 ± .15 93.03 ± .17
p = 10 88.78 ± .37 93.55 ± .21 92.60 ± .22 92.97 ± .16

F.4 ImageNet experiments

To verify if our observations on the CIFAR-10 generalization performance hold up for other datasets,
we also performed similar experiments for the much larger ImageNet dataset. Due to computational
constraints, we were only able to experiment with the RESNET-18 and MOBILENET-V2 architectures
and only for one trial.

It is worth noting that the neural networks we used cannot reach 100% training accuracy on Imagenet.
The models we employed only achieved top-1 training accuracy in the mid-70’s. So, we are not in
the so-called interpolation regime, and there are many other factors that can significantly impact
the generalization performance of the trained models. In particular, we find that not having weight
decay costs us around 3% in validation accuracy in the p = 2 case and this explains why our reported
numbers are lower than PyTorch’s baseline for each corresponding architecture. Despite this, we find
that p-GD with p = 3 has the best generalization performance on the ImageNet dataset, matching our
observation from the CIFAR-10 dataset.

Table 7: ImageNet top-1 validation accuracy (%) of p-GD on various deep neural networks. The best
performing value(s) of p for each individual deep network is highlighted in boldface.

RESNET-18 MOBILENET-V2
p = 1.1 64.08 63.41
p = 1.5 65.14 65.75
p = 2 (SGD) 66.76 67.91
p = 3 67.67 69.74
p = 6 66.69 67.05
p = 10 65.10 62.32

29


	Introduction
	Background and Problem Setting
	Mirror Descent with the p-th Power of p-norm
	Main theoretical results
	Asymptotic convergence rate

	Experiments
	Linear classification
	Deep neural networks

	Conclusion and Future Work
	Proofs for Section 2
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Proofs for Section 3
	Proof of Lemma 11
	Lower bounding the mirror descent updates
	Proof of Theorem 13
	Auxiliary Computation for Section B.3
	Proof of Theorem 14
	Simpler proof of Theorem 13

	Proofs for Section 3.2
	Proof of Corollary 15
	Proof of Lemma 16

	Practicality of p-GD
	Experimental details
	Linear classification
	CIFAR-10 experiments
	ImageNet experiments

	Additional experimental results
	Linear classification
	CIFAR-10 experiments: implicit bias
	CIFAR-10 experiments: generalization
	ImageNet experiments


