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Abstract—Solving a large-scale system of linear equations is a
key step at the heart of many algorithms in scientific comput-
ing, machine learning, and beyond. When the problem dimen-
sion is large, computational and/or memory constraints make it
desirable, or even necessary, to perform the task in a distributed
fashion. In this paper, we consider a common scenario in which
a taskmaster intends to solve a large-scale system of linear equa-
tions by distributing subsets of the equations among a number of
computing machines/cores. We propose a new algorithm called Ac-
celerated Projection-based Consensus, in which at each iteration
every machine updates its solution by adding a scaled version of
the projection of an error signal onto the nullspace of its system
of equations, and the taskmaster conducts an averaging over the
solutions with momentum. The convergence behavior of the pro-
posed algorithm is analyzed in detail and analytically shown to
compare favorably with the convergence rate of alternative dis-
tributed methods, namely distributed gradient descent, distributed
versions of Nesterov’s accelerated gradient descent and heavy-ball
method, the block Cimmino method, and Alternating Direction
Method of Multipliers. On randomly chosen linear systems, as well
as on real-world data sets, the proposed method offers significant
speed-up relative to all the aforementioned methods. Finally, our
analysis suggests a novel variation of the distributed heavy-ball
method, which employs a particular distributed preconditioning
and achieves the same theoretical convergence rate as that in the
proposed consensus-based method.

Index Terms—System of linear equations, distributed comput-
ing, big data, consensus, optimization.
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I. INTRODUCTION

W ITH the advent of big data, many analytical tasks of
interest rely on distributed computations over multiple

processing cores or machines. This is either due to the inher-
ent complexity of the problem, in terms of computation and/or
memory, or due to the nature of the data sets themselves that
may already be dispersed across machines. Most algorithms in
the literature have been designed to run in a sequential fashion,
as a result of which in many cases their distributed counterparts
have yet to be devised. In order to devise efficient distributed al-
gorithms, one has to address a number of key questions such as
(a) What computation should each worker carry out, (b) What
is the communication architecture and what messages should
be communicated between the processors, (c) How does the
distributed implementation fare in terms of computational com-
plexity, and (d) What is the rate of convergence in the case of
iterative algorithms.

In this paper, we focus on solving a large-scale system of
linear equations, which is one of the most fundamental prob-
lems in numerical computation, and lies at the heart of many
algorithms in engineering and the sciences. In particular, we
consider the setting in which a taskmaster intends to solve a
large-scale system of equations in a distributed way with the
help of a set of computing machines/cores (Figure 1). This
is a common setting in many computing applications, and the
task is mainly distributed because of high computational and/or
memory requirements (rather than physical location as in sensor
networks).

This problem can in general be cast as an optimization prob-
lem, with a cost function that is separable in the data1 (but not
in the variables). Hence, there are general approaches to con-
struct distributed algorithms for this problem, such as distributed
versions of gradient descent [2]–[4] and its variants (e.g. Nes-
terov’s accelerated gradient [5] and heavy-ball method [6]), as
well as the so-called Alternating Direction Method of Multipli-
ers (ADMM) [7] and its variants. ADMM has been widely used
[8]–[10] for solving various convex optimization problems in
a distributed way, and in particular for consensus optimization
[11]–[13], which is the relevant one for the type of separation
that we have here. In addition to the optimization-based meth-
ods, there are a few distributed algorithms designed specifically

1Solving a system of linear equations, Ax = b, can be set up as the optimiza-
tion problem minx ‖Ax− b‖2 = minx

∑
i
‖(Ax)i − bi‖2.
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Fig. 1. Schematic representation of the taskmaster and the m machines/cores.
Each machine i has only a subset of the equations, i.e. [Ai, bi].

for solving systems of linear equations. The most famous one of
these is what is known as the block Cimmino method [14]–[16],
which is a block row-projection method [17], and is in a way a
distributed implementation of the Kaczmarz method [18]. An-
other algorithm has been recently proposed in [19], [20], where
a consensus-based scheme is used to solve a system of linear
equations over a network of autonomous agents. Our algorithm
bears some resemblance to all of these methods, but as it will be
explained in detail, it has much faster convergence than any of
them.

Our main contribution is the design and analysis of a new
algorithm for distributed solution of large-scale systems of lin-
ear equations, which is significantly faster than all the existing
methods. In our methodology, the taskmaster assigns a subset
of equations to each of the machines and invokes a distributed
consensus-based algorithm to obtain the solution to the original
problem in an iterative manner. At each iteration, each machine
updates its solution by adding a scaled version of the projection
of an error signal onto the nullspace of its system of equations,
and the taskmaster conducts an averaging over the solutions
with momentum. The incorporation of a momentum term in
both projection and averaging steps results in accelerated con-
vergence of our method, compared to the other projection-based
methods. For this reason, we refer to this method as Acceler-
ated Projection-based Consensus (APC). We provide a complete
analysis of the convergence rate of APC (Section III), as well as a
detailed comparison with all the other distributed methods men-
tioned above (Section IV). Also by empirical evaluations over
both randomly chosen linear systems and real-world data sets,
we demonstrate the significant speed-ups from the proposed al-
gorithm, relative to the other distributed methods (Section VI).
Finally, as a further implication of our results, we propose a novel
distributed preconditioning method (Section VII), which can be
used to improve the convergence rate of distributed gradient-
based methods.

II. THE SETUP

We consider the problem of solving a large-scale system of
linear equations

Ax = b, (1)

where A ∈ RN×n, x ∈ Rn and b ∈ RN . While we will gener-
ally take N ≥ n, we will assume that the system has a unique

solution. For this reason, we will most often consider the square
case (N = n). The case where N < n and there are multiple
(infinitely many) solutions is discussed in Section V.

As mentioned before, for large-scale problems (whenN,n�
1), it is highly desirable, or even necessary, to solve the problem
in a distributed fashion. Assuming we have m machines (as in
Figure 1), the equations can be partitioned so that each machine
gets a disjoint subset of them. In other words, we can write (1)
as

⎡

⎢
⎢
⎢
⎢
⎣

A1

A2

...

Am

⎤

⎥
⎥
⎥
⎥
⎦
x =

⎡

⎢
⎢
⎢
⎢
⎣

b1
b2
...

bm

⎤

⎥
⎥
⎥
⎥
⎦
,

where each machine i receives [Ai, bi]. In some applications, the
data may already be stored on different machines in such a fash-
ion. For the sake of simplicity, we assume that m divides N , and
that the equations are distributed evenly among the machines, so
that each machine gets p = N

m equations. Therefore Ai ∈ Rp×n

and bi ∈ Rp for every i = 1, . . .m. It is helpful to think of p as
being relatively small compared to n. In fact, each machine has
a system of equations which is highly under-determined.

III. ACCELERATED PROJECTION-BASED CONSENSUS

A. The Algorithm

Each machine i can certainly find a solution (among infinitely
many) to its own highly under-determined system of equations
Aix = bi, with simply O(p3) computations. We denote this ini-
tial solution by xi(0). Clearly adding any vector in the right
nullspace of Ai to xi(0) will yield another viable solution. The
challenge is to find vectors in the nullspaces of each of theAi’s in
such a way that all the solutions for different machines coincide.

At each iteration t, the master provides the machines with an
estimate of the solution, denoted by x̄(t). Each machine then
updates its value xi(t) by projecting its difference from the es-
timate onto the nullspace, and taking a weighted step in that
direction (which behaves as a “momentum”). Mathematically

xi(t+ 1) = xi(t) + γPi(x̄(t)− xi(t)),

where

Pi = I −AT
i (AiA

T
i )
−1Ai (2)

is the projection matrix onto the nullspace of Ai (It is easy to
check that AiPi = 0 and P 2

i = Pi).
Although this might bear some resemblance to the block Cim-

mino method because of the projection matrices, APC has a
much faster convergence rate than the block Cimmino method
(i.e. convergence time smaller by a square root), as will be
shown in Section IV. Moreover, it turns out that the block
Cimmino method is in fact a special case of APC for γ = 1
(Section IV-E).

The update rule of xi(t+ 1) described above can be also
thought of as the solution to an optimization problem with two
terms: the distance from the global estimate x̄(t), and the dis-
tance from the previous solution xi(t). In other words, one can



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 14, JULY 15, 2019

Algorithm 1: APC: Accelerated Projection-Based Consen-
sus (For Solving Ax = b Distributedly).

Input: data [Ai, bi] on each machine i = 1, . . .m,
parameters η, γ
Initialization: on each machine i, find a solution xi(0)
(among infinitely many) to Aix = bi.
at the master, compute x̄(0)← 1

m

∑m
i=1 xi(0)

for t = 1 to T do
for each machine i parallel do
xi(t)← xi(t− 1) + γPi(x̄(t− 1)− xi(t− 1))

end for
at the master: x̄(t)← η

m

∑m
i=1 xi(t) + (1− η)x̄(t− 1)

end for

show that

xi(t+ 1) = argmin
xi

‖xi − x̄(t)‖2 + 1− γ

γ
‖xi − xi(t)‖2

s.t. Aixi = bi

The second term in the objective is what distinguishes this
method from the block Cimmino method. If one sets γ equal
to 1 (which is the reduction to the block Cimmino method), the
second term disappears altogether, and the update no longer de-
pends on xi(t). As we will show, this can have a dramatic impact
on the convergence rate.

After each iteration, the master collects the updated values
xi(t+ 1) to form a new estimate x̄(t+ 1). A plausible choice
for this is to simply take the average of the values as the new es-
timate, i.e., x̄(t+ 1) = 1

m

∑m
i=1 xi(t+ 1). This update works,

and is what appears both in ADMM and in the consensus method
of [19], [20]. But it turns out that it is extremely slow. Instead,
we take an affine combination of the average and the previous
estimate as

x̄(t+ 1) =
η

m

m∑

i=1

xi(t+ 1) + (1− η)x̄(t),

which introduces a one-step memory, and again behaves as a
momentum.

The resulting update rule is therefore

xi(t+ 1) = xi(t) + γPi(x̄(t)− xi(t)), i ∈ [m], (3a)

x̄(t+ 1) =
η

m

m∑

i=1

xi(t+ 1) + (1− η)x̄(t), (3b)

which leads to Algorithm 1.

B. Convergence Analysis

We analyze the convergence of the proposed algorithm and
prove that it has linear convergence (i.e. the error decays ex-
ponentially), with no additional assumption imposed. We also
derive the rate of convergence explicitly.

Let us define the matrix X ∈ Rn×n as

X � 1

m

m∑

i=1

AT
i (AiA

T
i )
−1Ai. (4)

As it will become clear soon, the condition number of this matrix
predicts the behavior of the algorithm. Note that since the eigen-
values of the projection matrix Pi are all 0 and 1, for every i, the
eigenvalues ofX are all between 0 and 1. Denoting the eigenval-
ues of X by μi, 0 ≤ μmin � μn ≤ · · · ≤ μ1 � μmax ≤ 1. Let
us define complex quadratic polynomials pi(λ) characterized by
γ and η as

pi(λ; γ, η) � λ2

+ (−ηγ(1− μi) + γ − 1 + η − 1)λ+ (γ − 1)(η − 1)
(5)

for i = 1, . . . , n. Further, define set S as the collection of pairs
γ ∈ [0, 2] and η ∈ R for which the largest magnitude solution
of pi(λ) = 0 among every i is less than 1, i.e.

S = {(γ, η) ∈ [0, 2]×R |
roots of pi have magnitude less than 1 for all i}. (6)

The following result summarizes the convergence behavior of
the proposed algorithm.

Theorem 1: Algorithm 1 converges to the true solution as fast
as ρt converges to 0, as t→∞, for some ρ ∈ (0, 1), if and only
if (γ, η) ∈ S. Furthermore, the optimal rate of convergence is

ρ =

√
κ(X)− 1

√
κ(X) + 1

≈ 1− 2
√

κ(X)
, (7)

where κ(X) = μmax

μmin
is the condition number of X , and the

optimal parameters (γ∗, η∗) are the solution to the following
equations

{
μmaxηγ = (1 +

√
(γ − 1)(η − 1))2,

μminηγ = (1−√(γ − 1)(η − 1))2.

Proof: Letx∗ be the solution ofAx = b. To make the analysis
easier, we define error vectors with respect to x∗ as ei(t) =
xi(t)− x∗ for all i = 1 . . .m, and ē(t) = x̄(t)− x∗, and work
with these vectors. Using this notation, Eq. (3a) can be rewritten
as

ei(t+ 1) = ei(t) + γPi(ē(t)− ei(t)), i = 1, . . . ,m.

Note that both x∗ and xi(t) are solutions toAix = bi. Therefore,
their difference, which is ei(t), is in the nullspace of Ai, and it
remains unchanged under projection onto the nullspace. As a
result, Piei(t) = ei(t), and we have

ei(t+ 1) = (1− γ)ei(t) + γPiē(t), i = 1, . . . ,m. (8)

Similarly, the recursion (3b) can be expressed as

ē(t+ 1) =
η

m

m∑

i=1

ei(t+ 1) + (1− η)ē(t),
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which using (8) becomes

ē(t+ 1) =
η

m

m∑

i=1

((1− γ)ei(t) + γPiē(t)) + (1− η)ē(t)

=
η(1− γ)

m

m∑

i=1

ei(t) +

(
ηγ

m

m∑

i=1

Pi + (1− η)In

)

ē(t).

(9)

It is relatively easy to check that in the steady state, the recur-
sions (8), (9) become

{
Piē(∞) = ei(∞), i = 1, . . . ,m

ē(∞) = 1
m

∑m
i=1 Piē(∞)

which because of 1
m

∑m
i=1 Pi = I − 1

m

∑m
i=1 A

T
i (AiA

T
i )
−1

Ai = I −X , implies ē(∞) = e1(∞) = · · · = em(∞) = 0, if
μmin �= 0.

Now let us stack up all the m vectors ei along with
the average ē together, as a vector e(t)T = [e1(t)

T , e2
(t)T , . . . , em(t)T , ē(t)T ] ∈ R(m+1)n. The update rule can be
expressed as:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

e1(t+ 1)

...

em(t+ 1)

ē(t+ 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

(1− γ)Imn γ

⎡

⎢
⎢
⎣

P1

...

Pm

⎤

⎥
⎥
⎦

η(1−γ)
m

[
In . . . In

]
M

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e1(t)

...

em(t)

ē(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

(10)
where M = ηγ

m

∑m
i=1 Pi + (1− η)In.

The convergence rate of the algorithm is determined by the
spectral radius (largest magnitude eigenvalue) of the (m+
1)n× (m+ 1)n block matrix in (10). The eigenvalues λi of
this matrix are indeed the solutions to the following character-
istic equation.

det

⎡

⎢
⎢
⎢
⎢
⎣

(1− γ − λ)Imn γ

⎡

⎢
⎢
⎣

P1

...

Pm

⎤

⎥
⎥
⎦

η(1−γ)
m

[
In . . . In

]
ηγ
m

∑m
i=1 Pi + (1− η − λ)In

⎤

⎥
⎥
⎥
⎥
⎦
= 0.

Using the Schur complement and properties of determinant, the
characteristic equation can be simplified as follows.

0 = (1− γ − λ)mn

× det

(
ηγ

m

m∑

i=1

Pi + (1− η − λ)In − η(1− γ)γ

(1− γ − λ)m

m∑

i=1

Pi

)

= (1− γ − λ)mn

× det

(
ηγ

m

(

1− 1− γ

1− γ − λ

) m∑

i=1

Pi + (1− η − λ)In

)

= (1− γ − λ)mn

× det

(
−ηγλ

(1− γ − λ)m

m∑

i=1

Pi + (1− η − λ)In

)

= (1− γ − λ)(m−1)n

× det

(

−ηγλ
∑m

i=1 Pi

m
+ (1− γ − λ)(1− η − λ)In

)

.

Therefore, there are (m− 1)n eigenvalues equal to 1− γ, and
the remaining 2n eigenvalues are the solutions to

0 = det (−ηγλ(I −X) + (1− γ − λ)(1− η − λ)I)

= det (ηγλX + ((1− γ − λ)(1− η − λ)− ηγλ) I) .

Whenever we have dropped the subscript of the identity matrix,
it is of size n.

Recall that the eigenvalues of X are denoted by
μi, i = 1, . . . , n. Therefore, the eigenvalues of ηγλX +
((1− γ − λ)(1− η − λ)− ηγλ) I are ηγλμi + (1− γ −
λ)(1− η − λ)− ηγλ, i = 1, . . . , n. The above determinant
can then be written as the product of the eigenvalues of the
matrix inside it, as

0 =

n∏

i=1

ηγλμi + (1− γ − λ)(1− η − λ)− ηγλ.

Therefore, there are two eigenvalues λi,1, λi,2 as the solution
to the quadratic equation

λ2 + (−ηγ(1− μi) + γ − 1 + η − 1)λ+ (γ − 1)(η − 1) = 0

for every i = 1, . . . , n, which will constitute the 2n eigenvalues.
When all these eigenvalues, along with 1− γ, are less than 1, the
error converges to zero as ρt, with ρ being the largest magnitude
eigenvalue (spectral radius). Therefore, Algorithm 1 converges
to the true solution x∗ as fast as ρt converges to 0, as t→∞, if
and only if (γ, η) ∈ S.

The optimal rate of convergence is achieved when the spectral
radius is minimum. For that to happen, all the above eigenval-
ues should be complex and have magnitude |λi,1| = |λi,2| =√
(γ − 1)(η − 1) = ρ. It implies that we should have

(γ + η − ηγ(1− μi)− 2)2 ≤ 4(γ − 1)(η − 1), ∀i,
or equivalently

−2
√
(γ − 1)(η − 1) ≤ γ + η − ηγ(1− μi)

≤ 2
√

(γ − 1)(η − 1)

for all i. The expression in the middle is an increasing function
of μi, and therefore for the above bounds to hold, it is enough
for the lower bound to hold for the μmin and the upper bound to
hold for μmax, i.e.

{
γ + η − ηγ(1− μmax)− 2 = 2

√
(γ − 1)(η − 1)

2 + ηγ(1− μmin)− γ − η = 2
√

(γ − 1)(η − 1)
,

which can be massaged and expressed as

{
μmaxηγ = (1 +

√
(γ − 1)(η − 1))2 = (1 + ρ)2

μminηγ = (1−√(γ − 1)(η − 1))2 = (1− ρ)2
.
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Dividing the above two equations implies κ(X) = (1+ρ)2

(1−ρ)2 ,
which results in the optimal rate of convergence being

ρ =

√
κ(X)− 1

√
κ(X) + 1

,

and that concludes the proof. �
We should remark that while in theory the optimal values of

γ and η depend on the values of the smallest and largest eigen-
values of X , in practice, one will almost never compute these
eigenvalues. Rather, one will use surrogate heuristics (such as
using the eigenvalues of an appropriate-size random matrix) to
choose the step size. (In fact, the other methods, such as dis-
tributed gradient descent and its variants, have the same issue as
well.)

C. Computation and Communication Complexity

In addition to the convergence rate, or equivalently the num-
ber of iterations until convergence, one needs to consider the
computational complexity per iteration. At each iteration, since
Pi = In −AT

i (AiA
T
i )
−1Ai, and Ai is p× n, each machine

has to do the following two matrix-vector multiplications: (1)
Ai(xi(t)− x̄(t)), which takes pn scalar multiplications, and (2)(
AT

i (AiA
T
i )
−1) times the vector from the previous step, which

takes another np operations (the pseudoinverse AT
i (AiA

T
i )
−1 is

computed only once). Thus the overall computational complex-
ity of each iteration is 2pn.

We should remark that the computation done at each machine
during each iteration is essentially a projection, which has con-
dition number one and is as numerically stable as a matrix vector
multiplication can be.

Finally, the communication cost of the algorithm, per iter-
ation, is as follows. After computing the update, each of the
m machines sends an n-dimensional vector to the master, and
receives back another n-dimensional vector, which is the new
average.

As we will see, the per-iteration computation and communi-
cation complexity of the other algorithms are similar to APC;
however, APC requires fewer iterations, because of its faster rate
of convergence.

IV. COMPARISON WITH RELATED METHODS

A. Distributed Gradient Descent (DGD)

As mentioned earlier, (1) can also be viewed as an optimiza-
tion problem of the form

minimize
x

‖Ax− b‖2,

and since the objective is separable in the data, i.e. ‖Ax− b‖2 =∑m
i=1 ‖Aix− bi‖2, generic distributed optimization methods

such as distributed gradient descent apply well to the problem.
The regular or full gradient descent has the update rule x(t+

1) = x(t)− αAT (Ax(t)− b), where α > 0 is the step size or
learning rate. The distributed version of gradient descent is one
in which each machine i has only a subset of the equations

[Ai, bi], and computes its own part of the gradient, which is
AT

i (Aix(t)− bi). The updates are then collectively done as:

x(t+ 1) = x(t)− α
m∑

i=1

AT
i (Aix(t)− bi). (11)

One can show that this also has linear convergence, and the
rate of convergence is

ρGD =
κ(ATA)− 1

κ(ATA) + 1
≈ 1− 2

κ(ATA)
. (12)

We should mention that since each machine needs to compute
AT

i (Aix(t)− bi) at each iteration t, the computational complex-
ity per iteration is 2pn, which is identical to that of APC.

B. Distributed Nesterov’s Accelerated Gradient Descent
(D-NAG)

A popular variant of gradient descent is Nesterov’s accelerated
gradient descent [5], which has a memory term, and works as
follows:

y(t+ 1) = x(t)− α

m∑

i=1

AT
i (Aix(t)− bi), (13a)

x(t+ 1) = (1 + β)y(t+ 1)− βy(t). (13b)

One can show [21] that the optimal convergence rate of this
method is

ρNAG = 1− 2
√

3κ(ATA) + 1
, (14)

which is improved over the regular distributed gradient descent

(one can check that κ(ATA)−1
κ(ATA)+1

≥ 1− 2√
3κ(ATA)+1

).

C. Distributed Heavy-Ball Method (D-HBM)

The heavy-ball method [6], otherwise known as the gradi-
ent descent with momentum, is another accelerated variant of
gradient descent as follows:

z(t+ 1) = βz(t) +

m∑

i=1

AT
i (Aix(t)− bi), (15a)

x(t+ 1) = x(t)− αz(t+ 1). (15b)

It can be shown [21] that the optimal rate of convergence of
this method is

ρHBM =

√
κ(ATA)− 1

√
κ(ATA) + 1

≈ 1− 2
√

κ(ATA)
, (16)

which is further improved over DGD and D-NAG ( κ(A
TA)−1

κ(ATA)+1
≥

1− 2√
3κ(ATA)+1

≥
√

κ(ATA)−1√
κ(ATA)+1

). This is similar to, but not the

same as, the rate of convergence of APC. The difference is that
the condition number of ATA =

∑m
i=1 A

T
i Ai is replaced with

the condition number of X =
∑m

i=1 A
T
i

(
AiA

T
i

)−1
Ai in APC.

Given its structure as the sum of projection matrices, one may
speculate thatX has a much better condition number than ATA.
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TABLE I
A SUMMARY OF THE CONVERGENCE RATES OF DIFFERENT METHODS. DGD: DISTRIBUTED GRADIENT DESCENT, D-NAG: DISTRIBUTED NESTEROV’S

ACCELERATED GRADIENT DESCENT, D-HBM: DISTRIBUTED HEAVY-BALL METHOD, MOU ET AL: CONSENSUS ALGORITHM OF [20], B-CIMMINO: BLOCK

CIMMINO METHOD, APC: ACCELERATED PROJECTION-BASED CONSENSUS. THE SMALLER THE CONVERGENCE RATE IS, THE FASTER IS THE METHOD.
NOTE THAT ρGD ≥ ρNAG ≥ ρHBM AND ρMou ≥ ρCim ≥ ρAPC

TABLE II
A COMPARISON BETWEEN THE CONDITION NUMBERS OF ATA AND X FOR

SOME EXAMPLES. m IS THE NUMBER OF MACHINES/PARTITIONS. THE

CONDITION NUMBER OF X IS TYPICALLY MUCH SMALLER (BETTER).
REMARKABLY, THE DIFFERENCE IS EVEN MORE PRONOUNCED

WHEN A HAS NON-ZERO MEAN

Indeed, our experiments with random, as well as real, data sets
suggest that this is the case and that the condition number of X
is often significantly better (see Table II).

D. Alternating Direction Method of Multipliers (ADMM)

Alternating Direction Method of Multipliers (more specifi-
cally, consensus ADMM [7], [12]), is another generic method
for solving optimization problems with separable cost function
f(x) =

∑m
i=1 fi(x) distributedly, by defining additional local

variables. Each machine i holds local variables xi(t) ∈ Rn and
yi(t) ∈ Rn, and the master’s value is x̄(t) ∈ Rn, for any time t.
For fi(x) = 1

2‖Aix− bi‖2, the update rule of ADMM simpli-
fies to

xi(t+ 1) = (AT
i Ai + ξIn)

−1(AT
i bi − yi(t) + ξx̄(t)),

i ∈ [m] (17a)

x̄(t+ 1) =
1

m

m∑

i=1

xi(t+ 1) (17b)

yi(t+ 1) = yi(t) + ξ(xi(t+ 1)− x̄(t+ 1)), i ∈ [m] (17c)

It turns out that this method is very slow (and often unstable)
in its native form for the application in hand. One can check that
when system (1) has a solution, all the yi variables converge to
zero in steady state. Therefore, setting yi’s to zero can speed up
the convergence significantly. We use this modified version in
Section VI, to compare with.

We should also note that the computational complexity of
ADMM is O(pn) per iteration (the inverse is computed using
matrix inversion lemma), which is again the same as that of
gradient-type methods and APC.

E. Block Cimmino Method

The Block Cimmino method [14]–[16], which is a parallel
method specifically for solving linear systems of equations, is
perhaps the closest algorithm in spirit to APC. It is, in a way, a
distributed implementation of the so-called Kaczmarz method
[18]. The convergence of the Cimmino method is slower by
an order in comparison with APC (its convergence time is the
square of that of APC), and it turns out that APC includes this
method as a special case when γ = 1.

The block Cimmino method is the following:

ri(t) = A+
i (bi −Aix̄(t)), i ∈ [m] (18a)

x̄(t+ 1) = x̄(t) + ν
m∑

i=1

ri(t), (18b)

where A+
i = AT

i (AiA
T
i )
−1 is the pseudoinverse of Ai.
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Proposition 2: The APC method (Algorithm 1) includes the
block Cimmino method as a special case for γ = 1.

Proof: When γ = 1, Eq. (3a) becomes

xi(t+ 1) = xi(t)− Pi (xi(t)− x̄(t))

= xi(t)−
(
I −AT

i (AiA
T
i )
−1Ai

)
(xi(t)− x̄(t))

= x̄(t) +AT
i (AiA

T
i )
−1Ai(xi − x̄(t))

= x̄(t) +AT
i (AiA

T
i )
−1(bi −Aix̄(t))

In the last equation, we used the fact that xi is always a solution
to Aix = bi. Notice that the above equation is no longer an “up-
date” in the usual sense, i.e., xi(t+ 1) does not depend on xi(t)
directly. This can be further simplified using the pseudoinverse
of Ai, A

+
i = AT

i (AiA
T
i )
−1 as

xi(t+ 1) = x̄(t) +A+
i (bi −Aix̄(t)).

It is then easy to see from the Cimmino’s equation (18a) that

ri(t) = xi(t+ 1)− x̄(t).

Therefore, the update (18b) can be expressed as

x̄(t+ 1) = x̄(t) + ν

m∑

i=1

ri(t)

= x̄(t) + ν

m∑

i=1

(xi(t+ 1)− x̄(t))

= (1−mν)x̄(t) + ν
m∑

i=1

xi(t+ 1),

which is nothing but the same update rule as in (3b) with η =
mν. �

It is not hard to show that optimal rate of convergence of the
Cimmino method is

ρCim =
κ(X)− 1

κ(X) + 1
≈ 1− 2

κ(X)
, (19)

which is slower (by an order) than that of APC (
√

κ(X)−1√
κ(X)+1

≈
1− 2√

κ(X)
).

F. Consensus Algorithm of Mou et el.

As mentioned earlier, a projection-based consensus algorithm
for solving linear systems over a network was recently proposed
by Mou et al. [19], [20]. For the master-worker setting studied
in this paper, the corresponding network would be a clique, and
the algorithm reduces to

xi(t+ 1) = xi(t) + Pi

⎛

⎝ 1

m

⎛

⎝
m∑

j=1

xj(t)

⎞

⎠− xi(t)

⎞

⎠ , i ∈ [m],

(20)
which is transparently equivalent to APC with γ = η = 1:

xi(t+ 1) = xi(t) + Pi(x̄(t)− xi(t)), i ∈ [m],

x̄(t+ 1) =
1

m

m∑

i=1

xi(t+ 1),

It is straightforward to show that the rate of convergence in
this case is

ρMou = 1− μmin(X) (21)

which is much slower than the block Cimmino method and APC.
One can easily check that

1− μmin(X) ≥ κ(X)− 1

κ(X) + 1
≥
√
κ(X)− 1

√
κ(X) + 1

.

Even though this algorithm is slow, it is useful for applica-
tions where a fully-distributed (networked) solution is desired.
Another networked algorithm for solving a least-squares prob-
lem has been recently proposed in [22].

A summary of the convergence rates of all the related methods
discussed in this section is provided in Table I.

V. UNDERDETERMINED SYSTEM

In this section, we consider the case when N < n and
rank(A) = N , i.e., the system is underdetermined and there
are infinitely many solutions. We prove that in this case, each
machine still converges to “a” (global) solution, and further, all
the machines converge to the same solution. The convergence
is again linear (i.e. the error decays exponentially fast), and the
rate of convergence is similar to the previous case.

Recall that the matrix X ∈ Rn×n defined earlier can be writ-
ten as

X =
1

m

m∑

i=1

AT
i (AiA

T
i )
−1Ai

=
1

m
AT

⎡

⎢
⎢
⎣

(A1A
T
1 )
−1

. . .

(AmAT
m)−1

⎤

⎥
⎥
⎦A

which is singular in this case.
We define a new matrix Y ∈ RN×N

Y � 1

m
AAT

⎡

⎢
⎢
⎣

(A1A
T
1 )
−1

. . .

(AmAT
m)−1

⎤

⎥
⎥
⎦ (22)

which has the same nonzero eigenvalues as X .
Theorem 3: SupposeN < n and rank(A) = N . Each one of

x1(t), . . . , xm(t), x̄(t) in Algorithm 1 converges to a solution as
fast as ρt converges to 0, as t→∞, for some ρ ∈ (0, 1), if and
only if (γ, η) ∈ S. Furthermore, the solutions converged to are
the same. The optimal rate of convergence is

ρ =

√
κ(Y )− 1

√
κ(Y ) + 1

≈ 1− 2
√

κ(Y )
, (23)

where κ(Y ) = μmax

μmin
is the condition number of Y , and the

optimal parameters (γ∗, η∗) are the solution to the following
equations

{
μmaxηγ = (1 +

√
(γ − 1)(η − 1))2,

μminηγ = (1−√(γ − 1)(η − 1))2.
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Proof: Let x∗ be a solution to Ax = b. We define error vec-
tors ei(t) = xi(t)− x∗ for all i = 1 . . .m, and ē(t) = x̄(t)−
x∗, as before, but this time show thatAei(t)→ 0 andAē(t)→ 0.
Recursion (3a) can be rewritten as

ei(t+ 1) = ei(t) + γPi(ē(t)− ei(t)), i = 1, . . . ,m,

as before. Since both x∗ and xi(t) are solutions to Aix = bi,
their difference ei(t) is in the nullspace of Ai, and it remains
unchanged under projection onto the nullspace. As a result,
Piei(t) = ei(t), and we have

ei(t+ 1) = (1− γ)ei(t) + γPiē(t), i = 1, . . . ,m. (24)

Similarly, the recursion (3b) can be expressed as

ē(t+ 1) =
η

m

m∑

i=1

ei(t+ 1) + (1− η)ē(t)

=
η

m

m∑

i=1

((1− γ)ei(t) + γPiē(t)) + (1− η)ē(t)

=
η(1− γ)

m

m∑

i=1

ei(t) +

(
ηγ

m

m∑

i=1

Pi + (1− η)In

)

ē(t),

as before.
Multiplying the recursions by A, we have

Aei(t+ 1) = (1− γ)Aei(t) + γAPiē(t), i = 1, . . . ,m,

and

Aē(t+ 1) =
η(1− γ)

m

m∑

i=1

Aei(t)

+

(
ηγ

m

m∑

i=1

APi + (1− η)A

)

ē(t)

Note thatPi = In −AT
i (AiA

T
i )
−1Ai, and we can expressAi

as Ai =
[
0p×p . . . Ip . . . 0p×p

]
A = EiA, where Ei is a p×

N matrix with an identity at its i-th block and zero everywhere
else. Therefore, we have APi = A−AAT

i (AiA
T
i )
−1EiA =

(IN −AAT
i (AiA

T
i )
−1Ei)A, and the recursions become

Aei(t+ 1) = (1− γ)Aei(t)

+ γ(IN −AAT
i (AiA

T
i )
−1Ei)Aē(t),

for i = 1, . . . ,m, and

Aē(t+ 1) =
η(1− γ)

m

m∑

i=1

Aei(t)

+

(
ηγ

m

m∑

i=1

(IN −AAT
i (AiA

T
i )
−1Ei) + (1− η)IN

)

Aē(t)

Stacking up all the m vectors Aei along with Aē, as an (m+
1)N -dimensional vector, results in

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ae1(t+ 1)

...

Aem(t+ 1)

Aē(t+ 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

(1− γ)ImN γ

⎡

⎢
⎢
⎣

P ′1
...

P ′m

⎤

⎥
⎥
⎦

η(1−γ)
m

[
IN . . . IN

]
M ′

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ae1(t)

...

Aem(t)

Aē(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where M ′ = ηγ
m

∑m
i=1 P

′
i + (1− η)IN and P ′i = IN −AAT

i

(AiA
T
i )
−1Ei.

The convergence rate of the algorithm is determined by the
spectral radius (largest magnitude eigenvalue) of this (m+
1)N × (m+ 1)N matrix. The eigenvalues λi of this matrix are
the solutions to the following characteristic equation.

det

⎡

⎢
⎢
⎢
⎢
⎣

(1− γ − λ)ImN γ

⎡

⎢
⎢
⎣

P ′1
...

P ′m

⎤

⎥
⎥
⎦

η(1−γ)
m

[
IN . . . IN

]
ηγ
m

∑m
i=1 P

′
i + (1− η − λ)IN

⎤

⎥
⎥
⎥
⎥
⎦
= 0.

Similar as in the proof of Theorem 1, using the Schur comple-
ment and properties of determinant, the characteristic equation
can be simplified as follows.

0 = (1− γ − λ)mN

× det

(
ηγ

m

m∑

i=1

P ′i + (1− η − λ)IN − η(1− γ)γ

(1− γ − λ)m

m∑

i=1

P ′i

)

= (1− γ − λ)mN

× det

(
ηγ

m

(

1− 1− γ

1− γ − λ

) m∑

i=1

P ′i + (1− η − λ)IN

)

= (1− γ − λ)mN

× det

(
−ηγλ

(1− γ − λ)m

m∑

i=1

P ′i + (1− η − λ)IN

)

= (1− γ − λ)(m−1)N

× det

(

−ηγλ
∑m

i=1 P
′
i

m
+ (1− γ − λ)(1− η − λ)IN

)

.

Note that 1
m

∑m
i=1 P

′
i = IN − 1

m

∑m
i=1 AA

T
i (AiA

T
i )
−1Ei =

IN − [AAT
1 (A1A

T
1 )
−1, . . . , AAT

m(AmAT
m)−1] = IN − Y .

There are (m− 1)N eigenvalues equal to 1− γ, and the
remaining 2N eigenvalues are the solutions to

0 = det (−ηγλ(I − Y ) + (1− γ − λ)(1− η − λ)I)

= det (ηγλY + ((1− γ − λ)(1− η − λ)− ηγλ) I) .

Notice that this is exactly the same as the one in the proof of
Theorem 1, with X replaced with Y .

It follows that the Ae1(t), . . . , Aem(t), Aē(t) converge to
zero as fast as ρt if and only if (γ, η) ∈ S, and the optimal rate
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of convergence is

ρ =

√
κ(Y )− 1

√
κ(Y ) + 1

.

Convergence of Ae1(t), . . . , Aem(t), Aē(t) to zero means that
each machine and the master converge to a solution, but the solu-
tions reached may not be the same. What remains to show is that
the only steady state is the “consensus steady state.” From (3),
it is easy to see that the steady state x1(∞), . . . , xm(∞), x̄(∞)
satisfies the following equation.

{
Pi(x̄(∞)− xi(∞)) = 0, i ∈ [m]

x̄(∞) = 1
m

∑m
i=1 xi(∞)

(25)

which can be written in a matrix form as
⎡

⎢
⎢
⎢
⎢
⎢
⎣

P1 −P1

. . .
...

Pm −Pm

− In
m . . . − In

m In

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1(∞)

...

xm(∞)

x̄(∞)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= 0. (26)

Notice that for any v ∈ Rn, the vector
[
vT . . . vT vT

]T
is

a solution to this equation, which corresponds to a consensus
steady state x1(∞) = · · · = xm(∞) = x̄(∞) = v. Therefore,
the nullspace of the above matrix is at least n dimensional, or in
other words, it has n zero eigenvalues. We will argue that this
matrix has only n zero eigenvalues, and therefore any steady-
state solution must be a consensus. To find the eigenvalues λi

we have to solve the following characteristic equation.

det

⎡

⎢
⎢
⎢
⎢
⎣

P1 − λI −P1

. . .
...

Pm − λI −Pm

− I
m . . . − I

m (1− λ)I

⎤

⎥
⎥
⎥
⎥
⎦
= 0.

Once again, using the Schur complement we have

0 =

(
m∏

i=1

det(Pi − λI)

)

× det

(

(1− λ)I − 1

m

m∑

i=1

(Pi − λI)−1Pi

)

Note that (Pi − λI)−1Pi =
1

1−λPi. Therefore, we can write

0 =

(
m∏

i=1

det(Pi − λI)

)

det

(

(1− λ)I − 1

m

m∑

i=1

1

1− λ
Pi

)

=

(
m∏

i=1

(
(−λ)p(1− λ)n−p

)
)

· det
(

(1− λ)I − 1

m

m∑

i=1

1

1− λ
Pi

)

= (−λ)N (1− λ)mn−N det

(

(1− λ)I − 1

m

m∑

i=1

1

1− λ
Pi

)

because Pi has p zero eigenvalues and n− p one eigenvalues.
Using the properties of determinant, we further have

0 = (−λ)N (1− λ)(m−1)n−N det

(

(1− λ)2I − 1

m

m∑

i=1

Pi

)

= (−λ)N (1− λ)(m−1)n−N det
(
(1− λ)2I − (I −X)

)

= (−λ)N (1− λ)(m−1)n−N det
(
(λ2 − 2λ)I +X

)

= (−λ)N (1− λ)(m−1)n−N
m∏

i=1

(
λ2 − 2λ+ μi

)

Therefore, the (m+ 1)n eigenvalues are as follows: N zero
eigenvalues, (m− 1)n−N eigenvalues at 1, and the remaining
2n are 1±√1− μi. Note that in the underdetermined case, X
has n−N zero eigenvalues. Therefore, n−N of 1±√1− μi

are zero. As a result, the overall number of zero eigenvalues is
N + (n−N) = n. This implies that the nullity of the matrix
in (26) is n and any steady-state solution must be a consensus
solution, which completes the proof. �

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed method (APC)
by comparing it with the other distributed methods discussed
throughout the paper, namely DGD, D-NAG, D-HBM, modi-
fied ADMM, and block Cimmino methods. We use randomly-
generated problems as well as real-world ones form the National
Institute of Standards and Technology (NIST) repository, Matrix
Market [23].

We first compare the rates of convergence of the algorithms
ρ, which is the spectral radius of the iteration matrix. To dis-
tinguish the differences, it is easier to compare the convergence
times, which is defined as T = 1

− log ρ (≈ 1
1−ρ ). We tune the pa-

rameters in all of the methods to their optimal values, to make
the comparison between the methods fair. Also as mentioned
before, all the algorithms have the same per-iteration computa-
tion and communication complexity. Table III shows the values
of the convergence times for a number of synthetic and real-
world problems with different sizes. It can be seen that APC has
a much faster convergence, often by orders of magnitude. As
expected from the analysis, the APC’s closest competitor is the
distributed heavy-ball method. Notably, in randomly-generated
problems, when the mean is not zero, the gap is much larger.

To further verify the performance of the proposed algorithm,
we also run all the algorithms on multiple problems, and observe
the actual decay of the error. Fig. 2 shows the relative error (the
distance from the true solution, divided by the true solution, in �2
norm) for all the methods, on two examples from the repository.
Again, to make the comparison fair, all the methods have been
tuned to their optimal parameters. As one can see, APC out-
performs the other methods by a wide margin, which is consis-
tent with the order-of-magnitude differences in the convergence
times of Table III. We should also remark that initialization does
not seem to affect the convergence behavior of our algorithm.
Lastly, we should mention that our experiments on cases where
there are missing updates (“straggler” machines) indicate that
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TABLE III
A COMPARISON BETWEEN THE OPTIMAL CONVERGENCE TIME T (= 1

− logρ ) OF DIFFERENT METHODS ON REAL AND SYNTHETIC EXAMPLES. BOLDFACE VALUES

SHOW THE SMALLEST CONVERGENCE TIME. QC324: MODEL OF H+
2 IN AN ELECTROMAGNETIC FIELD. ORSIRR 1: OIL RESERVOIR SIMULATION.

ASH608: ORIGINAL HARWELL SPARSE MATRIX TEST COLLECTION

Fig. 2. The decay of the error for different distributed algorithms, on two real problems from Matrix Market [23] (QC324: Model of H+
2 in an Electromagnetic

Field, and ORSIRR 1: Oil reservoir simulation). n = # of variables, N = # of equations, m = # of workers, p = # of equations per worker.

APC is at least as robust as the other algorithms to these effects,
and the convergence curves looks qualitatively the same as in
Fig. 2.

VII. A DISTRIBUTED PRECONDITIONING TO IMPROVE

GRADIENT-BASED METHODS

The noticeable similarity between the optimal convergence

rate of APC (
√

κ(X)−1√
κ(X)+1

) and that of D-HBM (
√

κ(ATA)−1√
κ(ATA)+1

) sug-

gests that there might be a connection between the two. It turns
out that there is, and we propose a distributed preconditioning

for D-HBM, which makes it achieve the same convergence rate
as APC. The algorithm works as follows.

Prior to starting the iterative process, each machine i can
premultiply its own set of equations Aix = bi by (AiA

T
i )
−1/2,

which can be done in parallel (locally) with O(p2n) operations.
This transforms the global system of equations Ax = b to a new
one Cx = d, where

C =

⎡

⎢
⎢
⎣

(A1A
T
1 )
−1/2A1

...

(AmAT
m)−1/2Am

⎤

⎥
⎥
⎦,
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and

d =

⎡

⎢
⎢
⎣

(A1A
T
1 )
−1/2b1

...

(AmAT
m)−1/2bm

⎤

⎥
⎥
⎦.

The new system can then be solved using distributed heavy-
ball method, which will achieve the same rate of convergence
as APC, i.e.

√
κ−1√
κ+1

where κ = κ(CTC) = κ(X).

VIII. CONCLUSION

We considered the problem of solving a large-scale system
of linear equations by a taskmaster with the help of a num-
ber of computing machines/cores, in a distributed way. We pro-
posed an accelerated projection-based consensus algorithm for
this problem, and fully analyzed its convergence rate. Analyt-
ical and experimental comparisons with the other known dis-
tributed methods confirm significantly faster convergence of the
proposed scheme. Finally, our analysis suggested a novel dis-
tributed preconditioning for improving the convergence of the
distributed heavy-ball method to achieve the same theoretical
performance as the proposed consensus-based method.

We should finally remark that while the setting studied in
this paper was a master-workers one, the same algorithm can
be implemented in a networked setting where there is no central
collector/master, using a “distributed averaging” approach ([24],
[25]).

REFERENCES

[1] N. Azizan-Ruhi, F. Lahouti, S. Avestimehr, and B. Hassibi, “Distributed
solution of large-scale linear systems via accelerated projection-based con-
sensus,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Apr.
2018, pp. 6358–6362.

[2] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochas-
tic gradient descent,” in Proc. Advances Neural Inf. Process. Syst., 2010,
pp. 2595–2603.

[3] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent,” in Proc. Advances Neural Inf.
Process. Syst., 2011, pp. 693–701.

[4] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gra-
dient descent,” SIAM J. Optim., vol. 26, no. 3, pp. 1835–1854, 2016.

[5] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/k2),” Sov. Math. Doklady, vol. 27, no. 2, 1983,
pp. 372–376.

[6] B. T. Polyak, “Some methods of speeding up the convergence of iteration
methods,” USSR Comput. Math. Math. Phys., vol. 4, no. 5, pp. 1–17, 1964.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method of
multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[8] B. He and X. Yuan, “On the O(1/n) convergence rate of the Douglas-
Rachford alternating direction method,” SIAM J. Numer. Anal., vol. 50,
no. 2, pp. 700–709, 2012.

[9] W. Deng and W. Yin, “On the global and linear convergence of the gen-
eralized alternating direction method of multipliers,” J. Scientif. Comput.,
vol. 66, no. 3, pp. 889–916, 2016.

[10] R. Zhang and J. T. Kwok, “Asynchronous distributed ADMM for consen-
sus optimization,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 1701–1709.

[11] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “D-ADMM:
A communication-efficient distributed algorithm for separable optimiza-
tion,” IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2718–2723,
May 2013.

[12] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of
the ADMM in decentralized consensus optimization,” IEEE Trans. Signal
Process., vol. 62, no. 7, pp. 1750–1761, Apr. 2014.

[13] L. Majzoubi and F. Lahouti, “Analysis of distributed ADMM algorithm for
consensus optimization in presence of error,” in Proc. IEEE Conf. Audio,
Speech, Signal Process., Mar. 2016, pp. 4831–4835.

[14] I. S. Duff, R. Guivarch, D. Ruiz, and M. Zenadi, “The augmented block
Cimmino distributed method,” SIAM J. Scientif. Comput., vol. 37, no. 3,
pp. A1248–A1269, 2015.

[15] F. Sloboda, “A projection method of the Cimmino type for linear algebraic
systems,” Parallel Comput., vol. 17, no. 4/5, pp. 435–442, 1991.

[16] M. Arioli, I. Duff, J. Noailles, and D. Ruiz, “A block projection method
for sparse matrices,” SIAM J. Scientif. Statist. Comput., vol. 13, no. 1,
pp. 47–70, 1992.

[17] R. Bramley and A. Sameh, “Row projection methods for large nonsym-
metric linear systems,” SIAM J. Scientif. Statist. Comput., vol. 13, no. 1,
pp. 168–193, 1992.

[18] S. Kaczmarz, “Angenäherte auflösung von systemen linearer gleichun-
gen,” Bulletin Int. de lAcademie Polonaise des Sci. et des Lettres, vol. 35,
pp. 355–357, 1937.

[19] J. Liu, S. Mou, and A. S. Morse, “An asynchronous distributed algorithm
for solving a linear algebraic equation,” in Proc. 52nd IEEE Annu. Conf.
Decis, Control, 2013, pp. 5409–5414.

[20] S. Mou, J. Liu, and A. S. Morse, “A distributed algorithm for solving a
linear algebraic equation,” IEEE Trans. Autom. Control, vol. 60, no. 11,
pp. 2863–2878, Nov. 2015.

[21] L. Lessard, B. Recht, and A. Packard, “Analysis and design of optimization
algorithms via integral quadratic constraints,” SIAM J. Optim., vol. 26,
no. 1, pp. 57–95, 2016.

[22] X. Wang, J. Zhou, S. Mou, and M. J. Corless, “A distributed algorithm
for least squares solutions,” IEEE Trans. Autom. Control, 2019, doi:
10.1109/TAC.2019.2894588.

[23] “Matrix market,” 2007. [Online]. Available: http://math.nist.gov/
MatrixMarket/. Accessed: May 2017.

[24] J. N. Tsitsiklis, “Problems in decentralized decision making and com-
putation,” M.S. thesis, Laboratory Inf. Decis. Syst., Massachusetts Inst.
Technol., Cambridge, MA, USA, 1984.

[25] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, 2004.

Navid Azizan Ruhi (S’15) received the B.S. degree
form Sharif University of Technology, Tehran, Iran,
and the M.S. degree from the University of South-
ern California, Los Angeles, CA, USA, in 2013 and
2015, respectively, both in electrical engineering. He
is currently working toward the Ph.D. degree in com-
puting and mathematical sciences with the California
Institute of Technology, Los Angeles, CA, USA. His
research interests span optimization, machine learn-
ing, complex networks, and distributed systems.

He was the first-place winner and a gold medalist
at the 21st National Physics Olympiad in Iran. His work has been recognized
with several awards, including the 2016 ACM GREENMETRICS Best Student
Paper Award, the Amazon Fellowship in Artificial Intelligence, the PIMCO
Graduate Fellowship, the Computing and Mathematical Sciences Fellowship,
the Annenberg Graduate Fellowship, and the Sharif University of Technology
President’s Award.

Farshad Lahouti (SM’13) received the B.Sc. de-
gree in electrical engineering from the University of
Tehran, Tehran, Iran, in 1997, and the Ph.D. degree
in electrical engineering from the University of Wa-
terloo, Waterloo, ON, Canada, in 2002. In 2005, he
joined the School of Electrical and Computer Engi-
neering, University of Tehran, as a Faculty Member,
where he founded the Center for Wireless Multime-
dia Communications. He was the Head of the Com-
munications Engineering Department from 2008 to
2012. He is currently a Visiting Professor of Electri-

cal Engineering with the California Institute of Technology, Pasadena, CA, USA,
where he initiated the Digital Ventures Design Program. His current research
interests are coding and information theory, signal processing, and communica-
tion theory with applications to wireless networks, cyber-physical systems and
man–machine symbiosis, and biological and neuronal networks. He received the
Distinguished Scientist Award from the Iran National Academy of Sciences in
2014.

https://dx.doi.org/10.1109/TAC.2019.2894588
http://math.nist.gov/MatrixMarket/


AZIZAN-RUHI et al.: DISTRIBUTED SOLUTION OF LARGE-SCALE LINEAR SYSTEMS VIA ACCELERATED PROJECTION-BASED CONSENSUS

Amir Salman Avestimehr (SM’17) received the B.S.
degree in electrical engineering from the Sharif Uni-
versity of Technology, Tehran, Iran, in 2003, and the
M.S. and Ph.D. degrees in electrical engineering and
computer science from the University of California
at Berkeley, Berkeley, CA, USA, in 2005 and 2008,
respectively. He was a Postdoctoral Scholar with the
Center for the Mathematics of Information, Califor-
nia Institute of Technology, in 2008. He is currently
an Associate Professor with the Department of Elec-
trical Engineering, University of Southern California,

Los Angeles, CA, USA. His research interests include information theory, com-
munications, distributed computing, and data analytics. He has received a num-
ber of awards, including the Communications Society and Information Theory
Society Joint Paper Award, the Presidential Early Career Award for Scientists
and Engineers for pushing the frontiers of information theory through its exten-
sion to complex wireless information networks, the Young Investigator Program
Award from the U.S. Air Force Office of Scientific Research, the National Sci-
ence Foundation CAREER Award, and the David J. Sakrison Memorial Prize
for outstanding research. He was a recipient (as Advisor) of the Qualcomm In-
novation Award and the Best Student Paper Award at the IEEE International
Symposium on Information Theory. He has been a Guest Associate Editor of
the IEEE TRANSACTIONS ON INFORMATION THEORY Special Issue on Interfer-
ence Networks and General Co-Chairs of the 2012 North America Information
Theory Summer School, the 2012 Workshop on Interference Networks, and the
2020 IEEE International Symposium on Information Theory. He is currently an
Associate Editor of the IEEE TRANSACTIONS ON INFORMATION THEORY.

Babak Hassibi (M’08) was born in Tehran, Iran, in
1967. He received the B.S. degree from the Univer-
sity of Tehran, Tehran, Iran, in 1989, and the M.S.
and Ph.D. degrees from Stanford University, Stan-
ford, CA, USA, in 1993 and 1996, respectively, all in
electrical engineering.

Since January 2001, he has been with the Cali-
fornia Institute of Technology, Pasadena, CA, USA,
where he is currently the Mose and Lilian S. Bohn
Professor of Electrical Engineering. From 2013 to
2016, he was the Gordon M. Binder/Amgen Professor

of Electrical Engineering and from 2008 to 2015, he was an Executive Officer of
Electrical Engineering, as well as the Associate Director of Information Science
and Technology. From October 1996 to October 1998, he was a Research Asso-
ciate with the Information Systems Laboratory, Stanford University, and from
November 1998 to December 2000, he was a Member of the Technical Staff with
the Mathematical Sciences Research Center, Bell Laboratories, Murray Hill, NJ,
USA. He has also held short-term appointments at Ricoh California Research
Center, the Indian Institute of Science, and Linkoping University, Sweden. He
is the coauthor of the books (both with A.H. Sayed and T. Kailath) Indefinite
Quadratic Estimation and Control: A Unified Approach to H2 and H∞ Theo-
ries (SIAM, 1999) and Linear Estimation (Prentice Hall, 2000). His research
interests include communications and information theory, control and network
science, and signal processing and machine learning. He is a recipient of an
Alborz Foundation Fellowship, the 1999 O. Hugo Schuck best paper award of
the American Automatic Control Council (with H. Hindi and S.P. Boyd), the
2002 National Science Foundation Career Award, the 2002 Okawa Foundation
Research Grant for Information and Telecommunications, the 2003 David and
Lucille Packard Fellowship for Science and Engineering, the 2003 Presiden-
tial Early Career Award for Scientists and Engineers (PECASE), and the 2009
Al-Marai Award for Innovative Research in Communications, and was a partic-
ipant in the 2004 National Academy of Engineering “Frontiers in Engineering”
program.

He has been a Guest Editor for the IEEE TRANSACTIONS ON INFORMATION

THEORY Special Issue on “Space-time transmission, reception, coding and signal
processing,” was an Associate Editor for Communications of the IEEE TRANS-
ACTIONS ON INFORMATION THEORY during 2004–2006, and is currently an Edi-
tor for the journal Foundations and Trends in Information and Communication”
and for the IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING. He
is an IEEE Information Theory Society Distinguished Lecturer for 2016–2017.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


