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Abstract—Most modern learning problems are highly overpa-
rameterized, i.e., have many more model parameters than the
number of training data points. As a result, the training loss
may have infinitely many global minima (parameter vectors that
perfectly “interpolate” the training data). It is therefore impera-
tive to understand which interpolating solutions we converge to,
how they depend on the initialization and learning algorithm,
and whether they yield different test errors. Here we study these
questions for the family of stochastic mirror descent (SMD) algo-
rithms, of which stochastic gradient descent (SGD) is a special
case. Recently, it has been shown that for overparameterized
linear models, SMD converges to the closest global minimum
to the initialization point, where closeness is in terms of the
Bregman divergence corresponding to the potential function of
the mirror descent. With appropriate initialization, this yields
convergence to the minimum-potential interpolating solution, a
phenomenon referred to as implicit regularization. On the theory
side, we show that for sufficiently overparameterized nonlinear
models, SMD with a (small enough) fixed step size converges to
a global minimum that is “very close” (in Bregman divergence)
to the minimum-potential interpolating solution, thus attaining
approximate implicit regularization. On the empirical side, our
experiments on the MNIST and CIFAR-10 datasets consistently
confirm that the above phenomenon occurs in practical scenarios.
They further indicate a clear difference in the generalization
performances of different SMD algorithms: experiments on the
CIFAR-10 dataset with different regularizers, ¢; to encourage
sparsity, /2 (SGD) to encourage small Euclidean norm, and /-,
to discourage large components, surprisingly show that the /.,
norm consistently yields better generalization performance than
SGD, which in turn generalizes better than the ¢; norm.

Index Terms—Mirror descent, stochastic gradient descent,
overparameterization, implicit regularization.

I. INTRODUCTION

EEP learning has demonstrably enjoyed a great deal of
success in a wide variety of tasks [1]-[7]. Despite its
tremendous success, the reasons behind the good performance
of these methods on unseen data is not fully understood (and,

This work was supported in part by the National Science Foundation
under grant ECCS-1509977, by a grant from Qualcomm Inc., by NASA’s
Jet Propulsion Laboratory through the President and Director’s Fund, and
by fellowships from Amazon Web Services Inc. and PIMCO, LLC. This
paper was presented in part at the 2019 International Conference on Machine
Learning (ICML) Generalization Workshop, Long Beach, CA, USA.

N. Azizan was with the Department of Computing and Mathematical
Sciences, California Institute of Technology, Pasadena, CA, 91125 USA. He
is now with the Department of Mechanical Engineering and the Institute for
Data, Systems, and Society (IDSS), Massachusetts Institute of Technology,
Cambridge, MA 02139 USA (e-mail: azizan@mit.edu)

S. Lale and B. Hassibi are with the Department of Electrical Engineer-
ing, California Institute of Technology, Pasadena, CA, 91125 USA (e-mail:
alale @caltech.edu; hassibi@caltech.edu)

Manuscript received June 8, 2020; revised December 7, 2020 and May 10,
2021; accepted May 24, 2021.

Digital Object Identifier 10.1109/TNNLS.2021.3087480

arguably, remains somewhat of a mystery). While the special
deep architecture of these models seems to be important to
the success of deep learning, the architecture is only part of
the story, and it has been now widely recognized that the
optimization algorithms used to train these models, typically
stochastic gradient descent (SGD) and its variants, play a key
role in learning parameters that generalize well.

Since these deep models are highly overparameterized, they
have a lot of capacity, and can fit to virtually any (even
random) set of data points [8]. In other words, these highly
overparameterized models can “interpolate” the training data,
so much so that this regime has been called the “interpolating
regime” [9]. In fact, on a given dataset, the loss function
typically has (infinitely) many global minima, which, however,
can have drastically different generalization properties (many
of them perform poorly on the test set). Which minimum
among all the possible minima we converge to in practice is
determined by the initialization and the optimization algorithm
that we use for training the model.

Since the loss functions of deep neural networks are non-
convex—sometimes even non-smooth—in theory, one may
expect the optimization algorithms to get stuck in local minima
or saddle points. In practice, however, such simple stochastic
descent algorithms almost always reach zero training error,
i.e., a global minimum of the training loss [8], [10]. More
remarkably, even in the absence of any explicit regularization,
dropout, or early stopping [8], the global minima obtained by
these algorithms seem to generalize quite well (contrary to
some other “bad” global minima). It has been also observed
that even among different optimization algorithms, i.e., SGD
and its adaptive variants, there is a discrepancy in the solutions
achieved by different algorithms and how they generalize [11].

In this paper, we propose training deep neural networks with
the family of stochastic mirror descent (SMD) algorithms,
which is a generalization of the popular SGD. For any choice
of potential function, there is a corresponding mirror descent
algorithm. In particular, to see whether these algorithms lead
to different minima and generalize differently, we train a
standard ResNet-18 architecture on the popular CIFAR-10
dataset using SMD with a few different potential functions:
¢4 norm, ¢, norm (SGD), and ¢, norm.! In all the cases, we
train the network with a sufficiently-small fixed step size until
we converge to an interpolating solution (global minimum).
Comparisons between the histograms of these different global
minima show that they are vastly different. In particular, the
solutions obtained by ¢;-SMD are much sparser, and, on

I'Since the potential function needs to be differentiable and strictly convex,
and {1 and ¢o norms are not, we use ¢14. and £ norms for a sufficiently
small € and a sufficiently large N instead (See Section III).
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the contrary, the solutions obtained by /., have virtually no
zero components while having a smaller maximum. More
importantly, there is a clear gap in the generalization perfor-
mance of these algorithms. In fact, surprisingly and some-
what counterintuitively, the solutions obtained by ¢.,-norm
SMD (which uses all the parameters in the already-highly-
overparameterized network) consistently generalize better than
the one obtained by SGD, which in turn outperform the sparser
one obtained by ¢1-norm SMD. This begs the question:

Which global minima do these algorithms converge to, and
what properties do they have?

On the theory side, we show that, for overparameterized
nonlinear models, if the model is sufficiently overparame-
terized so that the random initialization point is close to
the manifold of interpolating solutions (something that is
occasionally referred to as the “blessing of dimensionality”),
then the SMD algorithm for any particular potential function
converges to a global minimum that is approximately the
closest one to the initialization, in Bregman divergence
corresponding to the potential. For the special case of SGD,
this means that it converges to a global minimum which is
approximately the closest one to the initialization in the usual
Euclidean sense.

We perform extensive systematic experiments with vari-
ous initial points and various mirror descent algorithms for
the MNIST and CIFAR-10 datasets using standard off-the-
shelf deep neural network architectures for these datasets
with standard random initialization, and we measure all the
resulting pairwise Bregman divergences. We found that every
single result is exactly consistent with the above theory.
Indeed, in all our experiments, the global minimum achieved
by any particular mirror descent algorithm is the closest,
among all other global minima obtained by other mirrors and
other initializations, to its initialization in the corresponding
Bregman divergence. In particular, the global minimum ob-
tained by SGD from any particular initialization is closest to
the initialization in Euclidean sense, both among the global
minima obtained by different mirrors and among the global
minima obtained by different initializations.

This result, proven theoretically and corroborated by exten-
sive experiments, further implies that, when initialized around
zero, SGD converges to a solution that has almost the smallest
Euclidean norm, thus acting as an approximate /5-norm regu-
larizer. More generally, when initialized at the minimizer of
the potential, SMD with any potential function 1) converges
to a solution that has almost the smallest potential ). For
instance, when initilized around zero, the solution obtained by
SMD with ¢;-norm potential is approximately the minimum
¢1-norm one, which explains why its weights are much sparser.
Similarly, the solution obtained by SMD with the /,,-norm
potential has an /,,-norm regularization, which explains why
the maximum of the weights is much smaller in this case.

II. BACKGROUND

A. Preliminaries

Let us denote the training dataset by {(x;,y;) : i =
1,...,n}, where z; € RY are the inputs, and y; € R

are the labels. The model (which can be, e.g., linear, a
deep neural network, etc.) is defined by the general function
flzy,w) = fi(w) with some parameter vector w € RP.
Since typical deep models have a lot of capacity and are
highly overparameterized, we are particularly interested in the
overparameterized (or so-called interpolating) regime, where
p > n (often p > n). In this case, there are many parameter
vectors w that are consistent with the training data points. We
denote the set of these parameter vectors by

W=AweR? | f(z;,w) =y;,i =1,...,n}. (D

This is a high-dimensional set (e.g., a (p — n)-dimensional
manifold) in RP and depends only on the training data
{(zi,y;) : 1 =1,...,n} and the model f(,-).

The total loss on the training set (empirical risk) can
be expressed as L(w) = >, Li(w), where L;(:) =
£(yi, f(x;,w)) is the loss on the individual data point ¢,
and £(-,-) is a differentiable non-negative function, with the
property that ¢(y;, f(x;,w)) = 0 iff y; = f(z;,w). Often
Ly;, f(zi,w)) = Ly; — f(a;,w)), with £(-) convex and
having a global minimum at zero (such as square loss, Huber
loss, etc.). In this case, L(w) = Y7 | (y; — f(xi, w)). For
example, the conventional gradient descent (GD) algorithm
can be used as an attempt to minimize L(-) over w.

B. Stochastic Mirror Descent

An important generalization of GD is the mirror descent
(MD) algorithm, which was first introduced by Nemirovski
and Yudin [12] and has been widely used since then [13]-[16].
Consider a strictly-convex differentiable function (), called
the potential function. Then MD is given by the following
recursion

Vip(w;) = Vip(wi—1) —nVL(wi—1), wo 2

where n > 0 is known as the step size or learning
rate. Note that, due to the strict convexity of t(-), the
gradient V(-) defines an invertible map so that the re-
cursion in (2) yields a unique w; at each iteration, i.e.,
w; = VY (V(wi_1) — nVL(w;_1)). Compared to clas-
sical GD, rather than update the weight vector along the
direction of the negative gradient, the update is done in the
“mirrored” domain determined by the invertible transformation
Vi (-). Mirror descent was originally conceived to exploit
the geometrical structure of the problem by choosing an
appropriate potential. Note that MD reduces to GD when
¥(w) = 3|lw||?, since the gradient is simply the identity map.
Alternatively, the update rule (2) can be expressed as

w; = arg min T)wTVL(wi_l) + Dy (w, wi—1), 3)

where
Dy (w,wi—1) = P(w) — P(wi—1) — V¢(wi—1)T(w —w;_1)
4)

is the Bregman divergence with respect to the potential func-

tion ¢ (-). Note that D, (-, ) is non-negative, convex in its first

argument, and that, due to strict convexity, Dy (w,w’) = 0 iff
!

w=w.
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Different choices of the potential function (-) yield dif-
ferent optimization algorithms, which will potentially have
different implicit biases. A few examples follow.

Gradient Descent. For the potential function 9 (w) =
1|jw]|?, the Bregman divergence is D (w,w’) = 3|lw—w'|?,
and the update rule reduces to that of SGD.

Exponentiated Gradient Descent. For ¢(w) =
> jwjlogw;, the Bregman divergence becomes the
unnormalized relative entropy (Kullback-Leibler divergence)
Dy(w,w') = ijjlog% — > jwj + > wj, which
corresponds to the exponentiated gradient descent (aka the
exponential weights) algorithm [17].

p-norms Algorithm. For any ¢-norm squared potential
function ¢(w) = glwl?, with L + ¢ = 1, the algorithm
will reduce to the so-called p-norms algorithm [18], [19].

When n is large, computation of the entire gradient may be
cumbersome. Alternatively, in online scenarios, the entire loss
function L(-) may not be available, and only the local loss
functions may be provided at each iteration. In such settings,
a stochastic version of MD has been introduced, aptly called
stochastic mirror descent (SMD), which can be considered the
straightforward generalization of stochastic gradient descent
(SGD):

Vip(w;) = Vip(wi—1) — NV L (w—1), wo. )

The instantaneous loss functions L;(-) can be either drawn at
random or cycled through periodically.
III. TRAINING DEEP NEURAL NETWORKS WITH SMD

As mentioned earlier, the heavy overparameterization in
typical deep neural networks means that the loss function for
such architectures typically has infinitely many global minima,
and these different minima can have very different properties
and generalization performances. Motivated by this fact, we
propose training deep neural networks with stochastic mirror
descent algorithms, to see if they lead to different global
minima and different generalization performances.

In particular, we propose training deep neural networks with
SMD with potential function ¥ (w) = %Hng, which can be
expressed as:

_1_
—1

wilf] = [[wioalj]1% sign(w,1 () = 9V Li(wi) ]| x

sign (Jwi—1[j]|" sign(wi—a[j]) — gV Li(wim1) 1))
(6)
where w;[j] denotes the j-th element of the w; vector.

Note that, for this particular choice of potential function,
the update rule is separable, i.e., the j-th element of the new
weight vector can be computed using only the j-th element of
the weight and gradient vectors. This allows for efficient, par-
allel and distributed implementation of the algorithm, which
is highly desirable for large-scale learning tasks.

We should also remark that the computational complexity
of the ¢,-norm SMD is of the same order as that of the usual
SGD. In other words, it is linear in the number of weights,
which, again, can also be parallelized in the same way as SGD.

In addition, the storage complexity of the algorithm is
exactly the same as the usual SGD. All that is stored are the
weights.

A. An Experiment

We take the popular CIFAR-10 dataset and the standard
ResNet-18 architecture, commonly used for this dataset. We
initialize the network with random weights around zero, as
usual, and train it with the £,-norm SMD for a few different
values of k. In particular, we use: /1. norm, {5 norm (SGD),
{3 norm, g norm, ¢1y norm, and ¢4 norm, where /1. is a
surrogate for ¢; norm, and the higher norms are surrogates
for the /o, norm. In all the cases, we choose the step size to
be sufficiently small and train for a sufficiently large number
of steps until we converge to an interpolating solution (global
minimum).

We compare the generalization performance of these dif-
ferent solutions on the test set. Fig. 1 shows the test errors
of the solutions. As can be seen, there is a clear gap in
the generalization performance of the algorithms: SMD with
higher-norms consistently outperforms SGD, which in turn
performs better than the SMD with ¢;-norm. In fact, perhaps
surprisingly, by virtue of changing the optimizer from SGD
to these high-norm SMDs, without any additional tricks, we
outperform the state of the art for ResNet-18 on CIFAR-10.
This is particularly remarkable given that this very architecture
had been designed with training with SGD in mind.
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Fig. 1. Generalization performance of different SMD algorithms on the

CIFAR-10 dataset using the ResNet-18 neural network. SMDs with higher
norms (which are surragotes for o, norm) tend to achieve better general-
ization performance (lower test error) than the ones with smaller norms. In
particular, £14 consistently outperforms SGD (state-of-the-art), while £1-SMD
performs worse than both.

One may be curious to see how different the weights ob-
tained by different algorithms look. Fig. 2 shows the histogram
of the absolute value of the weights for four different SMDs,
initialized by the exact same set of weights. The histograms
of the final weights look substantially different, and, since
they all started from the same initial weights and they all
interpolate the same dataset, this difference is fully attributable
to the mirrors used. Remarkably, the histogram of the ¢;-SMD
has more weights at and around zero, i.e., it is very sparse.
The histogram of the ¢5-SMD (SGD) looks almost perfectly
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Fig. 2. Histogram of the absolute value of the final weights in the network for different SMD algorithm with different potentials. Note that each of the
four histograms corresponds to an 11 x 106-dimensional weight vector that perfectly interpolates the data. Even though the weights remain quite small, the
histograms are drastically different. £;-SMD induces sparsity on the weights. SGD appears to lead to a Gaussian distribution on the weights. £3-SMD starts
to reduce the sparsity, and £1¢ shifts the distribution of the weights significantly, so much so that almost all the weights are non-zero.

Gaussian. The one corresponding to ¢3 has somewhat shifted
to the right, and the /., has completely moved away from zero
(i.e., all the components are non-zero) while having no “tail.”
The fact that the ¢, solution, which uses all the parameters
in the already-highly-overparameterized network, generalizes
better than the sparser ones is quite remarkable.

IV. THEORETICAL RESULTS

In this section, we provide a theoretical analysis of what
different SMD algorithms converge to. In particular, we show
that for highly overparameterized models, under certain as-
sumptions: (1) SMD converges to a global minimum and
(2) the global minimum obtained by SMD is approximately
the closest one to the initialization in Bregman divergence
corresponding to the potential.

A. Warm-up: Overparameterized Linear Models

Overparameterized (or underdetermined) linear models have
been recently studied in many papers due to their simplicity
and the fact that there are interesting insights that one can ob-
tain from them. In this case, the model is f(x;, w) = 2w, the
set of global minima is W = {w | yi = LEZTw, i=1,... ,n},
and the loss is L;(w) = ¢(y; — 2T w). The following result
characterizes the solution that SMD converges to [20], [21].

Proposition 1. Consider a linear overparameterized model.
For sufficiently small step size, i.e., for any n > 0 for which
W(-)—nL;(-) is convex, and for any initialization wy, the SMD
iterates converge to

Woo = argmin Dy, (w, wo).
wew

Note that the step size condition, i.e., the convexity of 4 (-)—
nL;(-), depends on both the loss and the potential function.
For the case of SGD, ¥(w) = 1|w|/?, and £(y; — 2T w) =
1(y; — xT'w)?, so the condition reduces to the well-known

n < W In this case, Dy (w,w) is simply 3 |lw — wol|*.

Corollary 2. In particular, for the initialization wy =
arg min,, cpy ¥ (w), under the conditions of Proposition 1, the
SMD iterates converge to

Woo = arg min ¢ (w). @)
weW

This means that running SMD for a linear model with the
aforementioned wg, without any explicit regularization, results
in a solution that has the smallest potential v(-) among all
solutions, i.e., SMD implicitly regularizes the solution with
¥(+). In particular, this means that SGD initialized around zero
acts as an {s-norm regularizer. In this section, we show that
these results continue to hold for highly overparameterized

nonlinear models in an approximate sense.

Fig. 3. An illustration of the parameter space. VV represents the set of global
minima, wo is the initialization, B is the local neighborhood, w™ is the closest
global minimum to wq (in Bregman divergence), and weo is the minimum
that SMD converges to.
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B. Main Results
Let us define

Dy, (w,w') := Li(w) — Ly(w') — VL;j(w")" (w —w"), (8)

which is defined in a similar way to a Bregman divergence
for the loss function. The difference, though, is that, due to
the nonlinearity of f(-,-), unlike the potential function of the
Bregman divergence, the loss function L;(-) = £(y; — f(x;,))
need not be convex (even when £(-) is).

It has been argued in several recent papers that in highly
overparameterized neural networks, because WV is very high-
dimensional, any random initialization wgy is close to it,
with high probability [20], [22]-[25] (see the discussion in
Appendix A (Section A-B)). In such settings, it is reasonable
to make the following assumption about the manifold.

Assumption 1. Denote the initial point by wqy. There exists
w € W and a region B = {w' € R? | Dy(w,w’') < €}
containing wy, such that Dp,(w,w’) > 0,i = 1,...,n, for
all w' € B.

It is important to understand what this assumption means.
Since L;(-) is not necessarily convex, it is certainly not the
case that Dy, (w,w’) > 0 for all w’. However, since w is
a minimizer of L;(-), there will be a neighborhood around
it such that for all w’ in this neighborhood Dy, (w,w’) >
0 (see Fig. 4 for an illustration). What we are requiring is
that the initialization wq be inside the intersection of all such
neighborhoods for ¢ = 1,...,n. In other words, we require a
wy close enough to WW. The € in Assumption 1 characterizes
the closeness.

Fig. 4. An illustration of Dy, (w,w’) > 0 in a local region in Assumption 1.

Our second assumption states that in this local region, the
first and second derivatives of the model are bounded.

Assumption 2. Consider the region B in Assumption 1.
fi(+) have bounded gradient and Hessian on the convex hull
of B, ie, |Vfi(w)|< v and o < Amin(Hy, (0')) <
Amax(Hy, (W) < B,i=1,...,n, for all w' € conv B.

This is a mild assumption, which is assumed in other related
work such as [26] as well. Note that we do not require «
to be positive (just its boundedness). The following theorem
states that under Assumption 1, SMD converges to a global
minimum.

Theorem 3. Consider the set of interpolating parameters
W={weRP| flz;yw) =y;,i =1,...,n}, and the SMD
iterates given in (5), where every data point is revisited after
some steps. Under Assumption 1, for sufficiently small step

size, Le., for any n > 0 for which {(-) — nL;(-) is strictly
convex on B for all i, the following holds.

1) All the iterates {w;} remain in B.

2) The iterates converge (10 Wxo).
3) we € W.

In other words, we converge to a global minimum (interpo-
lating solution). The convergence is “local” in the sense that
Assumption 1 has to be met. However, as argued earlier, that is
not an unreasonable assumption in highly overparameterized
settings. Note that, while convergence (to some point) with
decaying step size is almost trivial, this result establishes con-
vergence to the solution set with a fixed step size. Furthermore,
the convergence is deterministic, and is not in expectation or
with high probability. For example, this result also applies to
the case where we cycle through the data deterministically.

We should also remark that the choice of distance in the
definition of the “ball” B was important to be the Bregman
divergence with respect to ¢(-) and in that particular order. In
fact, one cannot guarantee that the SMD iterates get closer to
an interpolating w at every step in the usual Euclidean sense.
However, one can establish that it gets closer in Dy (w,-).
Finally, it is important to note that we need the step size to be
just small enough to guarantee the strict convexity of ¢ (-) —
nL;(-) inside B, and not globally.

Denote the global minimum that is closest to the initializa-
tion in Bregman divergence by w*, i.e.,

w* = arg min Dy, (w, wo). )
weWw
Recall that in the linear case, this was what SMD converges
to. We show that in the nonlinear case, under Assumptions 1
and 2, SMD converges to a point w., which is “very close”
to w*.

Theorem 4. Define w* = argmin, ¢y, Dy(w,wo). Under
the conditions of Theorem 3, and Assumption 2, the following
holds:

1) Dy(weo, wo) = Dy (w*, wo) + o(e),
2) Dy(w*,we) = ofe).

In other words, if we start with an initialization that is O(¢)
away from )V (in Bregman divergence), we converge to a point
Weo € W that is o(e) away from w*. The Bregman divergence
of this point is o(€) from the minimum value it can take.

Corollary 5. For the initialization wy = argmin,, cg, ¢ (w),
under the conditions of Theorem 4, w* = argmin, ¢y, ¥ (w)
and the following holds:

) ¥(weo) = ¥(w*) + o),
2) Dy(w*, weo) = 0(€).

C. Fundamental Identity of SMD

An important tool used in our proofs is a “fundamental
identity” that governs the behavior of the iterates of SMD,
which holds under very general conditions.
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TABLE I
FIXED INITIALIZATION (THE SETTING DEPICTED IN FIG. 5). WE HAVE TRAINED THE NETWORK FROM A COMMON FIXED INITIALIZATION WITH 4
DIFFERENT SMDS (41, #2, £3, AND £19) TO OBTAIN 4 DIFFERENT INTERPOLATING SOLUTIONS. FOR EACH INTERPOLATING SOLUTION, WE CAN
COMPUTE ITS DISTANCE FROM THE INITIAL WEIGHT VECTOR. SINCE WE HAVE 4 DIFFERENT POTENTIALS, WE HAVE 4 DIFFERENT BREGMAN
DIVERGENCES TO ASSESS THE DISTANCE BY. THIS GIVES US A 4-BY-4 TABLE. THE COLUMNS CORRESPOND TO THE 4 DIFFERENT INTERPOLATING
SOLUTIONS (ONE FOR EACH SMD) AND THE ROWS CORRESPOND TO THE DIFFERENT BREGMAN DIVERGENCES. AS CAN BE SEEN, THE SMALLEST
ENTRY IN EACH ROW IS THE ONE WHERE THE POTENTIALS CORRESPONDING TO THE ALGORITHM AND THE BREGMAN DIVERGENCE MATCH. IN OTHER
WORDS, FOR EACH BREGMAN DIVERGENCE, THE CLOSEST INTERPOLATING SOLUTION TO THE INITIALIZATION IS THE ONE THAT IS OBTAINED FROM
THE SMD CORRESPONDING TO THAT PARTICULAR BREGMAN DIVERGENCE.

SMD 1-norm  SMD 2-norm (SGD)  SMD 3-norm  SMD 10-norm
1-norm BD 141 9.19 x 103 4.1 x 10% 2.34 x 10°
2-norm BD 3.15 x 103 562 1.24 x 103 6.89 x 103
3-norm BD 4.31 x 104 107 53.5 1.85 x 102
10-norm BD  6.83 x 1013 972 791 x107° | 272 x 1078

W

SMD-—!
Woo 1

Fig. 5. An illustration of the experiments in Table I.

Lemma 6. For any model f(-,-), any differentiable loss {(-),
any parameter w € W, and any step size n > 0, the following
relation holds for the SMD iterates {w;}

Dy (w,wi—1) = Dy(w, w;) + Dy—pr, (Wi, wi—1)

+nLi(w;) +nDr, (w,w;—1), (10)

forall v > 1.

This identity allows one to prove the results in a remarkably
simple and direct way. The ideas behind it are related to H,
estimation theory [27], [28], which was originally developed
in the 1990s in the context of robust control theory. In fact,
it has connections to the minimax optimality of SGD, which
was shown in [29] for linear models, and recently extended to
nonlinear models and general mirrors in [20].

V. EXPERIMENTAL VALIDATION

In this section, we evaluate the theoretical claims of Sec-
tion IV, by running extensive experiments for different ini-
tializations and different mirrors and computing the distances
between each global minimum achieved and each initializa-
tion, in different Bregman divergences.

The theoretical results suggest that SMD converges to
(almost) the closest point in the corresponding Bregman di-
vergence. While accessing all the points on WV and finding the
closest one is impossible, we design systematic experiments
to test this claim. We run experiments on some standard deep
learning problems, namely, a standard 4-layer convolutional
neural network (CNN) on the MNIST dataset [30], and the
ResNet-18 [31] on the CIFAR-10 dataset [32]. We use cross-
entropy loss as the loss function in our training. We train

the models from different initializations, and with different
SMDs from each particular initialization, until we reach 0
training error, i.e., a point on YW. We randomly initialize the
parameters of the networks around zero with A (0,0.0001)
for the weights in the convolutional and batch-norm layers,
and U(—0.01,0.01) for the weights in the linear layers. We
choose 6 independent initializations for the CNN, and 8
for ResNet-18, and for each initialization, we run different
SMD algorithms defined by the norm potential function
Y(w) = %Hng for the following values of ¢: (a) ¢ = 1+0.01,
as a surrogate for ¢; norm, (b) ¢ = 2, which is SGD, (c)
q = 3, and (d) ¢ = 10, as a surrogate for ¢,, norm. We use
a fixed step-size 7, chosen small enough to avoid diverging.
See Appendix B for more details on the experiments.

In all the cases, provided the learning rate was small
enough, the algorithm converged to an interpolating solution.
We measure the distances between the initializations and the
global minima obtained from different mirrors and different
initializations, in different Bregman divergences. Table I, and
Table II show some examples among different mirrors and
different initializations, respectively. Fig. 7 shows the distances
between a particular initial point and all the final points
obtained from different initializations and different mirrors
(the distances are often orders of magnitude different, so
we show them in logarithmic scale). The global minimum
achieved by any mirror from any initialization is the closest
in the correct Bregman divergence, among all mirrors, among
all initializations, and among both, which follows what Theo-
rems 3 and 4 predict. This trend is very consistent among all
our experiments, which can be found in Appendix B.

It is worth emphasizing that there is virtually no additional
overhead in training the networks with ¢,-norm SMD, com-
pared to SGD. The computational and memory complexity
of every iteration is the same. We empirically observed that
larger values of ¢ require smaller step sizes, and in fact,
this is also what the theoretical condition on the step size
suggests. For instance, we have the step sizes for SGD and ¢¢-
SMD as 1072 and 1079, respectively. However, the number
of iterations required for ¢19 SMD is not significantly higher
(1000 iterations, compared to 500 for SGD).

VI. PROOFS

In this section, we prove the main theoretical results dis-
cussed in Section IV.
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TABLE II
FIXED POTENTIAL (THE SETTING DEPICTED IN FIG. 6). WE HAVE TRAINED THE NETWORK FROM 8 DIFFERENT INITIAL POINTS WITH THE SAME SMD
(IN THIS CASE, SGD) TO OBTAIN 8 DIFFERENT INTERPOLATING SOLUTIONS. THE ROWS CORRESPOND TO THE INITIAL POINTS, THE COLUMNS
CORRESPOND TO THE INTERPOLATING SOLUTIONS, AND EACH ENTRY IS THE DISTANCE BETWEEN THE TWO, ALL MEASURED IN THE SAME BREGMAN
DIVERGENCE (IN THIS CASE, EUCLIDEAN). AS CAN BE SEEN, THE SMALLEST ENTRY IN EACH ROW IS THE ONE WHERE THE INITIAL POINT AND THE
FINAL POINT MATCH. IN OTHER WORDS, THE CLOSEST FINAL POINT TO EACH INITIAL POINT ¢, AMONG ALL THE EIGHT FINAL POINTS, IS THE ONE
OBTAINED BY THE ALGORITHM FROM THE INITIAL POINT 3.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 6 x 102 29x 103 28x10° 28x10° 2.8x10° 28x10° 2.8x10°5 2.8 x 103
Initial 2 2.8 x 10° | 6.1 x 102 2.8 x 102 2.8 x10° 2.8x10% 28x10% 2.8x10% 2.8 x 103
Initial 3 2.8 x 103 2.9 x 103 56 x 102 2.8x 103 28 x10® 28x10% 28x10®° 2.8x10°
Initial 4 2.8 x 103 29x 103 2.8 x 10° 59 x 102 28 x10° 28x10° 28x10® 28x10°
Initial 5 2.8 x 103 29x10% 28 x10® 2.8 x 103 57x 102 28x10® 28x10% 2.8x103
Initial 6 2.8 x 103 29x10% 28 x10® 28x10® 2.8 x 103 56 x 102 2.8x10% 2.8 x 103
Initial 7 2.8 x10% 29x10% 28 x10® 28x10® 2.8x10% 2.8x 103 6 x 102 2.8 x 102
Initial 8 2.8 x10% 29x 103 28 x10® 28x10° 2.8x10% 28x10% 2.8x10% | 5.8 x 102
S wl® wie  euy’ in B, and similarly all the iterates will remain in B.
nitalizatons: ¢ 3 ® (3) Next, we prove that the iterates converge and wo, € W.
o w(() o p g
w W o, If we sum up the identity (10) for all 7+ = 1,...,T, the

Final Points:

Fig. 6. An illustration of the experiments in Table II.

A. Convergence of SMD to the Interpolating Set

Let us first prove the convergence of SMD to the set of
solutions.

Assumption 1. Denote the initial point by wqy. There exists
w € W and a region B = {w' € RP | Dy(w,w') < €}
containing wo, such that Dy, (w,w’) > 0,i = 1,...,n, for
all w' € B.

Theorem 3. Consider the set of interpolating parameters
W={weRP| f(z;,w) =y;,i =1,...,n}, and the SMD
iterates given in (5), where every data point is revisited after
some steps. Under Assumption 1, for sufficiently small step
size, i.e., for any n > 0 for which () — nL;(-) is strictly
convex for all i, the following holds.

1) All the iterates {w;} remain in B.

2) The iterates converge (10 Weo).
3) wee € W.

Proof of Theorem 3. First we show that all the iterates will
remain in 5. Recall the identity (10) from Lemma 6, which
holds for all w € W. If w;_1 is in the region 3, we know that
the last term Dy, (w,w;_1) is non-negative. Furthermore, if
the step size is small enough that ¢(-) — nL;(-) is strictly
convex, the second term Dy _,r,(w;, w;—1) is a Bregman
divergence and is non-negative. Since the loss is non-negative,

nL;(w;) is always non-negative. As a result, we have
Dd)(wvwifl) 2 Dw(wywl)7 (11)

This implies that Dy, (w, w;) < €, which means w; is in 3 too.
Since wyq is in B, wy will be in B, and therefore, w, will be

first terms on the right- and left-hand side cancel each other
telescopically, and we have

T
Dy(w,wo) = Dy(w, wr) + Z [Dy—nr, (Wi, wi—1) (12)
i=1
+nLi(w;) +nDr, (w, wi—1)] .

Since Dy (w,wr) > 0, we have
St [Dymnr, (wiywim1) +nLi(w;) +nDr, (w,wi—1)] <
Dw(w,wo). If we take T" — oo, the sum still has to remain

bounded, i.e.,

(oo}
> [Dynr, (wi,wi1) + nLi(w;) + Dy, (w, w; 1)) (13)
1 =1

< Dy(w, wp).

Since the step size is small enough that v (-) — nL;(-) is
strictly convex for all 4, the first term Dy_,r, (wi, w;—1)
is non-negative. The second term 7L;(w;) is non-negative
because of the non-negativity of the loss. Finally, the last term
Dy, (w,w;_1) is non-negative because w;_; € B for all i.
Hence, all the three terms in the summand are non-negative,
and because the sum is bounded, they must go to zero as
1 — o0. In particular,

Dy_yr, (wi,w;—1) — 0, and nL;(w;) — 0. (14)

This implies convergence (w; — W), and that all the
individual losses are going to zero. Since every data point is
being revisited after some steps, all the data points are being
fit. Therefore, wo, € W. ]

B. Closeness of the Final Point to the Regularized Solution

Next, we show that with the additional Assumption 2 (which
is roughly equivalent to f;(-) having bounded Hessian in B),
not only do the iterates remain in B and converge to the set W,
but also they converge to a point which is very close to w* (the
closest solution to the initial point, in Bregman divergence).
The proof is again based on the fundamental identity of SMD.
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Fig. 7. We have trained the network from a few (6 for MNIST, and 8 for CIFAR-10) initial points with 4 different SMDs, to obtain a number of interpolating
solutions (24 for MNIST, and 32 for CIFAR-10). The plot shows the distance between a particular initial point (initial point 2 for MNIST, and initial point
4 for CIFAR-10) and each of the interpolating solutions. The smallest distance, among all the interpolating solutions, corresponds exactly to the final point
obtained from the particular initial point by SGD. This trend is observed consistently for all other mirror descents and all initializations (see the results in

Tables 8 and 9 in Appendix B).

Assumption 2. Consider the region B in Assumption 1.
fi(+) have bounded gradient and Hessian on the convex hull
of B, ie, |[Vfi(w)I< v and o < Apin(Hy, (w')) <
Amax(Hy, (w')) < B,i=1,...,n, for all w' € conv B.

Theorem 4. Define w* = arg min,, ¢y, Dy (w,wo). Under the

assumptions of Theorem 3, and Assumption 2, the following
holds:

1) Dy(woo,wp) = Dy (w*, wo) + o(e),
2) Dy(w*, wee) = 0e).

Proof of Theorem 4. Recall the identity (10) from Lemma 6.
Summing the identity for all ¢ > 1, we have

EEIVT

Dw(vaO) = Dw(wawm) + [Dw—nLi (wi, wi—1) (15)

(2

+nL;(w;

+nDr, (w,w;—1)].

for all w € V. Note that the only terms in the right-hand
side which depend on w are the first one Dy (w,ws) and
the last one 7>, Dp,(w,w;—1). In what follows, We will
argue that, within B, the dependence on w in the last term is
“weak.”

To further spell out the dependence on w in the last term,
let us expand D, (w,w;_1):

Dy, (w,wi—1) =0 — L;(w;—1) —
= —L;i(wi—1)

+ 0 (yi — fi(wi—1))V fi(wi—1)" (w — w;—1)
(16)

VLZ (wi,l)T(w — wifl)

for all w €
definition of

W, where the first equality comes from the
Dp,(-,-) and the fact that L;(w) = 0 for

w € W. The second equality is from taking the derivative
of L;(-) = ¢(y; — fi(-)) and evaluating it at w;_1.

By Taylor expansion of f;(w) around w;_; and using
Taylor’s theorem (Lagrange’s mean-value form), we have

fiw) = fi(wi—1) + V fi(wi—1)" (w — w;_1) a7
+ %(w —w;1)" Hy, (i) (w — w;_1),

for some 1; in the convex hull of w and w;_1. Since f;(w) =
y; for all w € W, it follows that

Vfi(wi1) (w —wi—1) = yi — fi(wi-1) — %(w
—wi—1)" Hy, (i) (w — w;—1),
(18)

for all w € W. Plugging this into (16), we have
Dp,(w,wi—1) = —Li(wi—1)
+(yi — filwi-1)) (yz = filwi-1)

- 50— ) Hy )0~ i)
19)

for all w € W. Finally, by plugging this back into the
identity (15), we have

D¢(waw0) = Dw(wawoo) + Z |:D1ZJ—77L7; (wiawi—l)
=1
+nLi(w;) —nLi(w;—1) (20)
+ 0l (yi — fi(wi—1))(yi — fiwi—1)

_ %(w —wi )" Hy, () (w — “’H))]'
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for all w € W. Note that this can be expressed as

Dy (w,wo) = Dy(w,wee) +C — Z 775' — filwi—1))(w
=1
—w;—1)" Hy, (;)(w — w; 1),
(21)

for all w € W, where C does not depend on w:

C= Z [Dy—nr, (Wi, wi—1) + nL;(w;) — nL;(w;—1) 22)
i=1

Jilwi—1))(yi — fi(wi-1))] -

From Theorem 3, we know that w,, € W. Therefore,
by plugging it into equation (21), and using the fact that
Dy(Weo, Woo) = 0, we have

=C - Zne’

—wi,l) Hy, (wy)(w

where w} is a point in the convex hull of ws, and w;_; (and
therefore also in conv B), for all . Similarly, by plugging w*,
which is also in W, into (21), we have

+ 0l (yi —

fz wz 1))( Woo

Dy (Woo, wo) 23)

LS _wifl)a
Dy (w*,wy) = Dy(w*, wee) + C

where w} is a point in the convex hull of w* and w;_; (and
therefore also in conv B), for all ¢. Subtracting the last two
equations from each other yields

Dy (Weo, wo) — Dy (w™, wo)

= =Dy ) + Y 50y
= filwi—1)) [(w* = wi—1)" Hy, (wi) (w* —wi—1)
— (weo

—wi—1) " Hy, (W) (weo — wi—1)] -

(25)

Note that since all w} and w’ are in conv B, by Assumption 2,
we have

w;) (Weo — Wi—1)
< Bllwee — wi—1]|?,  (26)

af|wee — wi—1||*< (woo — wi—1) Hy, (

and

D (w* —wi1)
< Bllw* — w4,

allw —wi|*< (w* —wi)" Hy, (w]
27
Further, again since all the iterates {w;} are in B, it follows

that ||wee — wi_1]|?= Of(€) and ||w* — w;_1|*= O(e).
As a result the difference of the two terms, i.e., [(w* —

wi—1)T Hy, (w]) (w* —wi—1) = (weo —wi—1)" Hy, (w

w;—1)], is also O(e), and we have

) (Wweo —
Dy (w*,wo) = —Dw(w* Woo)

+Zne' — fi(w;—1))O(e).
(28)

Now note that f/(yi — fl(wl_l)) = K’(fi(w) — fi(wi_l)) =
O(Vfi(w;)T(w — w;_1)) for some 1w; € conv B. Since
|lw — w;_1]|*= O(e) for all i, and since £(-) is differentiable
and f;(-) have bounded derivatives, it follows that ¢'(y; —
fi(wi—1)) = o(e). Furthermore, the sum is bounded. This
implies that D, (weo, wo) — Dy (w*, wp) = —Dy(w*, weo) +
o(€), or equivalently

Dy (w*,wp)) + Dy(w*, we) = 0(€). (29)

Dy (oo, wo) —

(Dy (oo, wo) —

The term in parentheses Dy (woo,wo) — Dy (w*, wo) 1is
non-negative by the definition of w*. The second term
Dy (w*, we) is non-negative by convexity of . Since both
terms are non-negative and their sum is o(¢), each one of them
is at most o(e), i.e.,

Dy (oo, wo) — Dy, (w*, wo) = o(€) 30)
Dy (w*, weo) = 0(€)
which concludes the proof. O

Corollary 5. For the initialization wo = arg min,, cp, ¥ (w),
under the conditions of Theorem 4, w* = argmin, <, ¥ (w)
and the following holds.

D Y(wee) = ¢(w*) + o(e)

2) Dy(w*, weo) = 0(€)

Proof of Corollary 5. The proof is a straightforward applica-
tion of Theorem 4. Note that we have

= (w) — ¥ (wo) — Vip(wo)” (w — wo)

for all w. When wy = argmin,cp, ¢(w), it follows that
Vi(we) = 0, and

Dy (w,wo) €1y

Dy (w, wo) = th(w) — ¥ (wo). (32
In particular, by plugging in w, and w*, we have
Dy (oo, wo) = 1h(wes) —tp(wo) and Dy (w*, wo) = ¢p(w*)—

1 (wp). Subtracting the two equations from each other yields

= P(wee) —Y(w”),  (33)

which, along with the application of Theorem 4, concludes the
proof. O

Dw(woovwo) - Dw(w*awo)

VII. RELATED WORK

There have been many efforts in the past few years to study
deep learning from an optimization perspective, e.g., [9], [20],
[22]-[26], [33]-[35]. While it is not possible to review all the
contributions here, we comment on the ones that are most
closely related to ours and highlight the distinctions between
our results and those.

Many recent papers have studied the convergence of the
(S)GD algorithm in the so-called “overparameterized” setting
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(or “interpolating” regime), which is common in deep learning
[9], [24], [26], [36]. Almost all these works, similar to ours,
assume that the initialization is close to the solution space (of
global minima), which is reasonable in highly overparameter-
ized models. However, our results are more general because
they extend to SMD.

On the other hand, even for the case of SGD, our results
are stronger than those in this literature, in the sense that not
only do we show convergence to a global minimum, but we
also show that the weight vector we converge to, weo, say, is
close to the closest interpolating weight vector, w*, say. De-
noting the initialization by wg, Oymak and Soltanolkotabi [26]
showed that for SGD, ||ws — wgl| is bounded by a constant
factor of ||w* —wypl|. Our Theorem 4 shows the much stronger
statement that ||we, — wol|= [Jw* — wo|[4+o(||w* — wol|). We
further show that w., and w* are very close to one another,
Viz. |weo — w*||?= o(||w* — wp||)), something that could not
be inferred from the previous results.

There exist a number of results that characterize the implicit
regularization properties of different algorithms in different
contexts [20], [21], [37]-[42]. The closest ones to our results,
since they concern mirror descent, are the works of [20],
[21]. The authors in [21] consider linear overparameterized
models, and show that if SMD happens to converge to a global
minimum, then that global minimum will be the one that is
closest in Bregman divergence to the initialization, a result
they obtain by examining the KKT conditions. However, they
do not provide any conditions for convergence and whether
SMD converges with a fixed step size or not. [20] also study
linear models, but derive conditions on the step size for
which SMD converges to the aforementioned global minimum.
Our current results extend the aforementioned to nonlinear
overparametrized models, and show that, for small enough
fixed step size, and for initializations close enough to the
space of interpolating solutions, SMD converges to a global
minimum, something which had not been shown in any of
the previous work. Assuming every data point is revisited
often enough, the convergence we establish is deterministic.
Finally, we show that the solution we converge to exhibits
approximate implicit regularization, something that was not
known for nonlinear models.

VIII. CONCLUSION

In this paper, we studied the convergence and implicit regu-
larization properties of the family of stochastic mirror descent
(SMD) for highly overparameterized nonlinear models. From
a theoretical perspective, we showed that, under reasonable as-
sumptions, SMD with sufficiently small step size (1) converges
to a global minimum and (2) the global minimum converged
to is approximately the closest to the initialization in Bregman
divergence sense. Furthermore, our extensive experimental
results, on various initializations, various mirror descents, and
various Bregman divergences, revealed that this phenomenon
indeed happens in practical scenarios in deep learning. This
further implies that different mirror descent algorithms act
as different regularizers, a property that is referred to as im-
plicit regularization. The fact that the ¢,-regularized solution

showed a better generalization performance than the other
ones, while /1 was the opposite, suggests the importance of
a comprehensive study of the role of regularization, and the
choice of the best regularizer, to improve the generalization
performance of deep neural networks.
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Supplementary Material

APPENDIX A
ADDITIONAL PROOFS

A. Fundamental Identity of SMD

Lemma 6. For any model f(-,-), any differentiable loss {(-), any parameter w € W, and any step size n > 0, the following
relation holds for the SMD iterates {w;}

Dy (w, wi—1) = Dy (w,wi) + Dy, (wi, wi—1) + nLi(wi) + 1D, (w, wi-1), (10)
for all i > 1.
Proof of Lemma 6. Let us start by expanding the Bregman divergence Dy, (w, w;) based on its definition
Dy (w, w;) = p(w) = ¢(w;) = Vip(wy) " (w — w;).
By plugging the SMD update rule Vi)(w;) = Vi (w;—1) — nV L;(w;—1) into this, we can write it as
Dy(w,w;) = (w) = p(w;) = Vip(wi—1)" (w — w;) + 1V Li(wi—1)" (w — wy). (34)

Using the definition of Bregman divergence for (w,w;_1) and (w;,w;—1), i.e., Dy(w,wi—1) = P(w) — P(wi—1) —
Vio(wi—1)T (w — w;—1) and Dy (wi, wi—1) = P(w;) — (w;—1) — Vp(w;—1)T (w; — w;_1), we can express this as

Dy (w,w;) = Dy (w, wi—1) + (wi—1) + Vip(wi—1)" (w — wi_1) — 1 (w;)

— Ve (wi_1) " (w — w;) + 9V Li(wi—1)T (w — wy) (35)

= Dy(w, wi—1) + P(wi—1) — ¥(w;) + Vip(wi_1)" (w; — w;i_1)
+ 1V Li(w; )" (w — w;) (36)
= Dy (w,wi—1) — Dy (w;, wi—1) + nVLl-(wi_l)T(w — w;). (37)

Expanding the last term using w — w; = (w — w;—1) — (w; — w;—1), and following the definition of Dy,(.,.) from (8) for
(w,w;—1) and (w;,w;_1), we have

Dy (w,w;) = Dy(w, wi—1) — Dy (wi, wi—1) + nVLi(wi—1)" (w — w;_1)

=V Li(wi—1)" (w; — wi—1) (38)
= Dy (w,wi—1) = Dy(wi, wi—1) + 1 (Li(w) = Li(wi—1) — D, (w, wi-1))
—n(Li(w;) — Li(wi—1) — Dr, (wi, wi—1)) (39)
= Dy(w,w;—1) — Dy (w;, wi—1) + 1 (Li(w) — Dp, (w, w;—1))
=1 (Li(w;) — Dr,, (wi, wi—1)) (40)
Note that for all w € W, we have L;(w) = 0. Therefore, for all w € W
Dy(w,w;) = Dy (w, w;—1) — Dy(wi, wi—1) —nDp, (w,wi—1) — nL;(w;) + nDp, (wi, wi—1). 41)
Combining the second and the last terms in the right-hand side leads to
Dy(w,w;) = Dy(w, wi—1) — Dy—pr, (Wi, wi—1) —nDp, (w,w;—1) — nL;(w;), (42)
for all w € W, which concludes the proof. O

B. Closeness to the Interpolating Set in Highly Overparameterized Models

As we mentioned earlier, it has been argued in a number of recent papers that for highly overparameterized models, any
random initial point is, with high probability, close to the solution set W [20], [22]-[25]. In the highly overparameterized
regime, we have p > n, and so, the dimension of the manifold VW, which is p — n, is very large. For simplicity, we outline
an argument for the case of Euclidean distance, bearing in mind that a similar argument can be used for general Bregman
divergence. Note that the distance of an arbitrarily chosen wg to W is given by

min  |lw — wo|?
w
st. y=f(z,w)
where y = vec(y;,i = 1,...,n) and f(z,w) = vec(f(x;,w),i =1,...,n). This can be approximated by
min  |jw — wpl|?
w

st y= f(z,w) + Vf(x,wo)T(w — wp)
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where V f(z,wo)T = vec(Vf(x;,w)T,i =1,...,n) is the n x p Jacobian matrix. The latter optimization can be solved to
ield
Y * 2 T T -1
lw* = woll*~ (y = f(z,w0))" (Vf(z,wo)" Vf(x,wo))  (y— fla,wo)) (43)

Note that V f(z,wo)TV f(z,wp) is an n x n matrix consisting of the sum of p outer products. When the x; are sufficiently
random, and p >> n, it is not unreasonable to assume that, with high probability,

Amin (VS (2, wo) "V f (2, wo)) = Qp),

from which we conclude
n

" 1
" —wol*~ fly = f(z wo)|*-OC) = O(0), (44)
since y — f(x,wp) is n-dimensional. The above implies that wq is close to w* and hence to W.

APPENDIX B
ADDITIONAL DETAILS ON THE EXPERIMENTAL RESULTS

In order to evaluate the theoretical claims, we ran systematic experiments on standard deep learning problems.

Datasets. We use the standard MNIST [30] and CIFAR-10 [32] datasets.

Architectures. For MNIST, we use a 4-layer convolutional neural network (CNN) with 2 convolution layers and 2 fully
connected layers. The convolutional layers and the fully connected layers are picked wide enough to obtain 2 x 108 trainable
parameters. Since MNIST dataset has 60,000 training samples, the number of parameters is significantly larger than the number
of training data points, and the problem is highly overparameterized. For the CIFAR-10 dataset, we use the standard ResNet-
18 [31] architecture without any modifications. CIFAR-10 has 50,000 training samples and with the total number of 11 x 105
parameters in ResNet-18, the problem is again highly overparameterized.

Loss Function. We use the cross-entropy loss as the loss function in our training. We train the models from different
initializations, and with different mirror descents from each particular initialization, until we reach 0 training error, i.e., until
we hit W.

Initialization. We randomly initialize the parameters of the networks around zero (N(0,0.0001)). We choose 6 independent
initializations for the CNN, and 8 for ResNet-18, and for each initialization, we run the following 4 different SMD algorithms.

Algorithms. We use the mirror descent algorithms defined by the norm potential ¥ (w) = %Hng for the following four
different norms: (a) ¢; norm, i.e., ¢ = 1 + ¢, (b) £ norm, i.e., ¢ = 2 (which is SGD), (¢) ¢3 norm, i.e., ¢ = 3, (d) 19 norm,
i.e., ¢ = 10 (as a surrogate for £, norm). The update rule can be expressed as follows.

wilj] = ||wi 119 sign(wina 1) = nVLi(wi) ]| sign (Jwioa 1 sign(wina ) — nVLawi)[T), @9)

where w;[j] denotes the j-th element of the w; vector.
We use a fixed step size 7. The step size is chosen to obtain convergence to global minima.

A. MNIST Experiments

1) Closest Minimum for Different Mirror Descents with Fixed Initialization: We provide the distances from final points
(global minima) obtained by different algorithms from the same initialization, measured in different Bregman divergences for
MNIST classification task using a standard CNN. Note that in all tables, the smallest element in each row is on the diagonal,
which means the point achieved by each mirror has the smallest Bregman divergence to the initialization corresponding to that
mirror, among all mirrors. Tables III, IV, V, VI, VII, and VIII depict these results for 6 different initializations. The rows are
the distance metrics used as the Bregman Divergences with specified potentials. The columns are the global minima obtained
using specified SMD algorithms.

TABLE III
MNIST INITIAL POINT 1.

SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm

I-norm BD 2.767 937.8 1.05 x 10% 1.882 x 10°
2-norm BD 301.6 58.61 261.3 2.118 x 10*
3-norm BD 1720 37.45 7.143 2518

10-norm BD  7.453 x 108 773.4 0.2939 0.003545
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TABLE 1V
MNIST INITIAL POINT 2.
SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm
I-norm BD 2.78 945 1.37 x 10% 2.01 x 10°
2-norm BD 292 59.3 374 2.29 x 104
3-norm BD 1.51 x 103 38.6 11.6 2.71 x 103
10-norm BD  1.06 x 108 831 0.86 0.00321
TABLE V
MNIST INITIAL POINT 3.
SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm
I-norm BD 3.02 968 1.06 x 10% 1.9 x 10°
2-norm BD 291 60.9 272 2.12 x 10*
3-norm BD 1.49 x 103 39.1 7.82 2.49 x 103
10-norm BD 1.1 x 108 900 0411 0.00318
TABLE VI
MNIST INITIAL POINT 4.
SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm
I-norm BD 2.78 1.21 x 103 1.08 x 10% 1.92 x 10°
2-norm BD 291 713 271 2.15 x 10%
3-norm BD 1.48 x 103 49.7 7.56 2.52 x 103
10-norm BD 9.9 x 107 1.72 x 103 0.352 0.00296
TABLE VII
MNIST INITIAL POINT 5.
SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm
I-norm BD 2.79 958 1.08 x 10% 2 x 10°
2-norm BD 292 60.4 271 2.28 x 104
3-norm BD 1.49 x 103 39 7.52 2.69 x 103
10-norm BD  9.09 x 107 846 0.342 0.00309
TABLE VIII
MNIST INITIAL POINT 6.
SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm
I-norm BD 2.96 930 1.08 x 104 1.9 x 10°
2-norm BD 308 59 271 2.12 x 104
3-norm BD 1.63 x 103 38.6 7.46 2.47 x 103
10-norm BD  1.65 x 108 864 0.334 0.00295

2) Closest Minimum for Different Initializations with Fixed Mirror: We provide the pairwise distances between different
initial points and the final points (global minima) obtained by using fixed SMD algorithms in MNIST dataset using a standard
CNN. Note that the smallest element in each row is on the diagonal, which means the closest final point to each initialization,
among all the final points, is the one corresponding to that point. Tables IX, X, XI, and XII depict these results for 4 different

SMD algorithms. The rows are the initial points, and the columns are the final points corresponding to each initialization.

TABLE IX
MNIST 1-NORM BREGMAN DIVERGENCE BETWEEN THE INITIAL POINTS AND THE FINAL POINTS OBTAINED BY SMD 1-NORM.

Final 1  Final 2 Final 3 Final 4 Final 5 Final 6
Initial Point 1 = 2.7671 20311 20266 20331 20340 20282
Initial Point 2 20332 2.7774 20281 20299 20312 20323
Initial Point 3 20319 20312 3.018 20344 20309 20322
Initial Point 4 20339 20279 20310 2.781 20321 20297
Initial Point 5 20347 20317 20273 20316 2.7902 20311
Initial Point 6 20344 20323 20340 20318 20321 2.964
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MNIST 2-NORM BREGMAN DIVERGENCE BETWEEN THE INITIAL POINTS AND THE FINAL POINTS OBTAINED BY SMD 2-NORM (SGD).

MNIST 3-NORM BREGMAN DIVERGENCE BETWEEN THE INITIAL POINTS AND THE FINAL POINTS OBTAINED BY SMD 3-NORM.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6
Initial Point 1 7.143 35302 32.077 32.659 32.648 32.309
Initial Point 2 32.507 11.578 32.256 32.325 32.225 32.46
Initial Point 3 31.594  34.643 = 7.8239 32.521 31.58 32.519
Initial Point 4  32.303 34.811 32.937 7.5589 32.617 32.284
Initial Point 5 32.673 34.678 32.071 32,738  7.5188 31.558
Initial Point 6  32.116 34.731 32376 32431 31.699 = 7.4593
TABLE XII
MNIST 10-NORM BREGMAN DIVERGENCE BETWEEN THE INITIAL POINTS AND THE FINAL POINTS OBTAINED BY SMD 10-NORM.
Final 1 Final 2 Final 3 Final 4 Final 5 Final 6
Initial Point 1 = 0.00354 0.37 0.403 0.286 0.421 0.408
Initial Point 2 0.33 0.00321 0.369 0.383 0.415 0.422
Initial Point 3 0.347 0.318 0.00318 0.401 0.312 0.406
Initial Point 4 0.282 0.38 0.458 0.00296 0.491 0.376
Initial Point 5 0.405 0.418 0.354 0.484 0.00309 0.48
Initial Point 6 0.403 0.353 0.422 0.331 0.503 0.00295

TABLE X

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6
Initial Point I = 58.608  670.75 667.03 684.18 671.36 667.84
Initial Point 2 669.84 | 59.315 669.16 682.04 66945  669.98
Initial Point 3  666.35  670.22 = 60.858 68344  667.57 669.99
Initial Point 4  669.71 668.86  671.19 = 77.275 670.33 669.7
Initial Point 5 671.1 669.12 66845  683.61 60.39 666.04
Initial Point 6  669.46  670.92 671.59 684.32 667.37 = 59.043

TABLE XI

3) Closest Minimum for Different Initializations and Different Mirrors: Now we assess the pairwise distances between
different initial points and final points (global minima) obtained by all different initializations and all different mirrors (Table 8).
The smallest element in each row is exactly the final point obtained by that mirror from that initialization, among all the mirrors

and all the initial points.
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B. CIFAR-10 Experiments

1) Closest Minimum for Different Mirror Descents with Fixed Initialization: We provide the distances from final points
(global minima) obtained by different algorithms from the same initialization, measured in different Bregman divergences for
CIFAR-10 classification task using ResNet-18. Note that in all tables, the smallest element in each row is on the diagonal,
which means the point achieved by each mirror has the smallest Bregman divergence to the initialization corresponding to
that mirror, among all mirrors. Tables XIII, XIV, XV, XVI, XVII, XVIII, XIX, and XX depict these results for 8 different
initializations. The rows are the distance metrics used as the Bregman Divergences with specified potentials. The columns are
the global minima obtained using specified SMD algorithms.

TABLE XIII
CIFAR-10 INITIAL POINT 1.

SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm

I-norm BD 189 9.58 x 103 4.19 x 102 2.34 x 10°

2-norm BD 3.12 x 10° 597 1.28 x 103 6.92 x 103

3-norm BD 4.31 x 104 119 55.8 1.87 x 102

10-norm BD  1.35 x 1014 869 6.34 x 107° | 2.64 x 10~8
TABLE XIV

CIFAR-10 INITIAL POINT 2.

SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm

I-norm BD 275 9.86 x 103 4.09 x 104 2.38 x 10°

2-norm BD 4.89 x 103 607 1.23 x 103 7.03 x 103

3-norm BD 9.21 x 10 104 53.5 1.88 x 102

10-norm BD  1.17 x 10® 225 0.000102 2.65 x 10~8
TABLE XV

CIFAR-10 INITIAL POINT 3.

SMD I-norm  SMD 2-norm (SGD)  SMD 3-norm  SMD 10-norm

1-norm BD 141 9.19 x 103 4.1 x 101 2.34 x 10°

2-norm BD 3.15 x 103 562 1.24 x 103 6.89 x 103

3-norm BD 4.31 x 104 107 53.5 1.85 x 102

10-norm BD  6.83 x 1013 972 791 x 107° = 2.72x 10~ 8
TABLE XVI

CIFAR-10 INITIAL POINT 4.

SMD I-norm  SMD 2-norm (SGD)  SMD 3-norm  SMD 10-norm

1-norm BD 255 9.77 x 103 4.18 x 104 2.36 x 10°

2-norm BD 3.64 x 103 594 1.26 x 103 6.96 x 103

3-norm BD 5.5 x 10* 116 54 1.87 x 102

10-norm BD  3.74 x 1014 640 5.33 x 107° | 2.67 x 10~8
TABLE XVII

CIFAR-10 INITIAL POINT 5.

SMD I-norm  SMD 2-norm (SGD)  SMD 3-norm  SMD 10-norm

1-norm BD 113 9.48 x 103 4.15 x 102 2.32 x 10°
2-norm BD 2.95 x 102 572 1.27 x 103 6.85 x 103
3-norm BD 3.68 x 10* 109 56.2 1.84 x 102
10-norm BD  2.97 x 1013 151 5.74 x 107> = 2.61 x 10~8

TABLE XVIII
CIFAR-10 INITIAL POINT 6.

SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm

1-norm BD 128 9.25 x 103 4.25 x 10% 2.34 x 10°
2-norm BD 2.71 x 102 558 1.29 x 103 6.89 x 103
3-norm BD 3.34 x 10* 104 55.3 1.85 x 102

10-norm BD  2.61 x 1013 612 4.74 x 10~° 2.62 x 10~8
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TABLE XIX
CIFAR-10 INITIAL POINT 7.
SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm
I-norm BD 223 9.76 x 103 4.38 x 104 2.27 x 10°
2-norm BD 2.41 x 102 599 1.37 x 103 6.65 x 103
3-norm BD 2.3 x 10* 116 61 1.78 x 102
10-norm BD  4.22 x 1012 679 6.42 x 107° | 2.55 x 10~ 8
TABLE XX
CIFAR-10 INITIAL POINT 8.
SMD I-norm  SMD 2-norm (SGD) SMD 3-norm  SMD 10-norm
I-norm BD 145 9.37 x 103 4.17 x 102 2.36 x 10°
2-norm BD 2.48 x 10° 576 1.26 x 103 6.99 x 103
3-norm BD 2.85 x 10% 108 54.5 1.89 x 102
10-norm BD  1.81 x 1013 1.22 x 103 5.2 x 107° 2.64 x 10—8

2) Closest Minimum for Different Initializations with Fixed Mirror: We provide the pairwise distances between different
initial points and the final points (global minima) obtained by using fixed SMD algorithms in CIFAR-10 dataset using ResNet-
18. Note that the smallest element in each row is on the diagonal, which means the closest final point to each initialization,
among all the final points, is the one corresponding to that point. Tables XXI, XXII, XXIII, XXIV depict these results for
4 different SMD algorithms. The rows are the initial points and the columns are the final points corresponding to each

initialization.
TABLE XXI
CIFAR-10 1-NORM BREGMAN DIVERGENCE BETWEEN THE INITIAL POINTS AND THE FINAL POINTS OBTAINED BY SMD 1-NORM.
Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 | 1.9 x 102 8.1 x 107 8.1 x 10% 8.4 x 10% 8 x 10% 8.2 x 10% 7.8 x 102 7.8 x 10*%
Initial 2 8.1 x 104 = 2.7 x 102 8.1 x10% 8.3 x 104 8 x 104 8.2x10* 78x10* 7.9x10%
Initial 3 8.1 x 10* 8.1 x 10% 1.4 x 102 8.4 x 10% 8 x 104 8.1x10* 7.8x10% 7.8x10%
Initial 4 8.1 x 104 8.1 x 10% 8.1 x 104 2.5 x 102 8 x 104 8.2 x 10% 7.8 x 104 7.9 x 104
Initial 5 8.1 x 10* 8.1 x 10* 8.1 x 104 8.3 x 104 1.1 x 102 8.1 x 10% 7.8 x 104 7.8 x 104
Initial 6 8.1 x 104 81 x10* 8.1x10% 84 x 104 8 x 104 1.3x102 7.8x10% 7.8x10%
Initial 7 8.1 x 104 8.1 x10* 81 x10% 84 x 104 8 x 10% 8.1 x 104 2.2 x10%2 7.8 x10%
Initial 8 8.1 x 104 8.1 x 10* 8.1 x 104 8.4 x 104 7.9 x 104 8.1 x 10% 7.8 x 104 1.5 x 102

TABLE XXII

CIFAR-10 2-NORM BREGMAN DIVERGENCE BETWEEN THE INITIAL POINTS AND THE FINAL POINTS OBTAINED BY SMD 2-NORM (SGD).

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 6 x 102 2.9 x 103 2.8 x 103 2.8 x 103 2.8 x 103 2.8 x 103 2.8x10° 28x103
Initial 2 2.8 x 10° 6.1 x 102 28x10% 28x103 28x10° 2.8x103 2.8x103 2.8 x 103
Initial 3 2.8 x 103 2.9 x 103 56 x 102 2.8x 103 28x10® 2.8x103 2.8x103 2.8x 103
Initial 4 2.8 x 103 2.9 x 103 2.8 x 103 59x 102 28x103 28x10% 28x103 28x103
Initial 5 2.8 x 103 2.9 x 103 2.8 x 108 2.8x 103 57x 102 28x10% 28x10% 2.8x103
Initial 6 2.8 x 103 2.9 x 103 28x 103 28x10% 2.8 x 103 56 x 102 2.8x10% 2.8x 103
Initial 7 2.8 x 103 2.9 x 103 2.8 x 103 2.8 x 103 2.8 x 103 2.8 x 103 6 x 102 2.8 x 103
Initial 8 2.8 x 103 2.9 x 103 2.8 x 103 2.8 x 103 2.8 x 103 2.8 x 103 2.8 x 103 5.8 x 102
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TABLE XXIII
CIFAR-10 3-NORM BREGMAN DIVERGENCE BETWEEN THE INITIAL POINTS AND THE FINAL POINTS OBTAINED BY SMD 3-NORM.
Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 55.844 103.47 103.61 104.05 106.2 105.32 110.88 104.56
Initial 2 105.87 53.455 103.68 104.04 106.31 105.34 110.93 104.58
Initial 3 105.89 103.59 53.527 104.09 106.29 105.35 110.99 104.55
Initial 4 105.83 103.54 103.64 53.978 106.23 105.3 110.87 104.54
Initial 5 105.82 103.55 103.64 104 56.161 105.34 110.88 104.55
Initial 6 105.91 103.6 103.66 104.1 106.28 55.316 110.94 104.55
Initial 7 105.87 103.51 103.67 103.98 106.26 105.25 61.045 104.5
Initial 8 105.77 103.54 103.59 104.04 106.25 105.28 110.88 54.509
TABLE XXIV
CIFAR-10 10-NORM BREGMAN DIVERGENCE BETWEEN THE INITIAL POINTS AND THE FINAL POINTS OBTAINED BY SMD 10-NORM.
Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Tnitial 1 264 x10°8 2.89x 10~ 8 2.99 x 10~8 2.81 x 10~8 2.85 x 10~ 8 2.82 x 10~ 8 2.66 x 10~ 8 2.82 x 10~ 8
Initial 2 2.79 x 10~8 2.65x 1078 2.83x107% 283 x1078 271 x107% 274x10"% 269x10°8% 2.88x 108
Initial 3 2.89 x 10~8  2.87 x 108 2.72x 1078 294x107% 284 x1078 2.89x10"% 278x10"8 294x10°8
Initial 4 279 x 1078 286 x 1078 292 x 10~° 267 x1078 284x107% 281 x1078 269x10"% 2.85x 108
Initial 5 2.76 x 108 2.88 x 10~8 2.95 x 10~8 2.93 x 10~8 2.61 x 1078 2.73x 108 2.66 x 10~8 2.83 x 10~8
Initial 6  2.80 x 108 2.76 x 108 2.93 x 10~8 2.79 x 10~8 2.76 x 10~8 262 x10=8 2.71x10°8 2.85 x 10~8
Initial 7 273 x 1078 276x1078 282x1078 279x1078 271x10"8 277 x 108 2.55 x 10°8 2.83x 108
Initial 8 2.73x 1078  279x 1078 285x10"% 278x1078 275x107% 2.74x10"% 273x 108 2.64 x 108

3) Closest Minimum for Different Initializations and Different Mirrors: Now we assess the pairwise distances between
different initial points and final points (global minima) obtained by all different initializations and all different mirrors (Table 8).
The smallest element in each row is exactly the final point obtained by that mirror from that initialization, among all the mirrors
and all the initial points.
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Fig. 10. An illustration of the experimental results. For each initialization wq, we ran different SMD algorithms until convergence to a point on the set VW
(zero training error). We then measured all the pairwise distances from different woo to different wo, in different Bregman divergences. The closest point
(among all initializations and all mirrors) to any particular initialization wo in Bregman divergence with potential () = ||-||2 is exactly the point obtained
by running SMD with potential ||-||§ from wq.

C. Distribution of the Final Weights of the Network

One may be curious to see how the final weights obtained by these different mirrors look, and whether, for example, mirror
descent corresponding to the ¢;-norm potential induces sparsity. We examine the distribution of the weights in the network
for these algorithms starting from the same initialization. Fig. 11 shows the histogram of the initial weights, which follows
a half-normal distribution. Figs. 12 (a), (b), (c), and (d) show the histogram of the weights for ¢;-SMD, ¢,-SMD (SGD),
¢3-SMD, and ¢1,-SMD, respectively. Note that each of the four histograms corresponds to an 11 x 10%-dimensional weight
vector that perfectly interpolates the data. Even though, perhaps as expected, the weights remain quite small, the histograms
are drastically different. The histogram of the ¢;-SMD has more weights at and close to zero, which again confirms that it
induces sparsity. The histogram of the ¢2-SMD (SGD) looks almost identical to the histogram of the initialization, whereas
the /5 and /1y histograms are shifted to the right, so much so that almost all weights in the ¢1¢ solution are non-zero and in
the range of 0.005 to 0.04. For comparison, all the distributions are shown together in Fig. 12(e).
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Fig. 11. Histogram of the absolute value of the initial weights in the network (half-normal distribution).
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Fig. 12. Histogram of the absolute value of the final weights in the network for different SMD algorithms: (a) ¢1-SMD, (b) ¢2-SMD (SGD), (c) ¢3-SMD,
and (d) £10-SMD. Note that each of the four histograms corresponds to an 11 x 10%-dimensional weight vector that perfectly interpolates the data. Even
though the weights remain quite small, the histograms are drastically different. £1-SMD induces sparsity on the weights, as expected. SGD does not seem to
change the distribution of the weights significantly. £3-SMD starts to reduce the sparsity, and £1¢ shifts the distribution of the weights significantly, so much

so that almost all the weights are non-zero.
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D. Generalization Errors of Different Mirrors/Regularizers

Here, we show the performance of the SMD algorithms discussed before for each individual run.

For MNIST, perhaps not surprisingly, all the four SMD algorithms achieve around 99% or higher accuracy for every
individual run. For CIFAR-10, however, as noted before, there is a notable difference between the test errors of different
mirrors/regularizers on the same architecture. Fig. 13 shows the test accuracies of different algorithms with eight random
initializations around zero, as discussed before. The /1y performs consistently the best, while the ¢; performs consistently the
worst. We should reiterate that the loss function is exactly the same in all these experiments, and all of them have been trained
to fit the training set perfectly (zero training error). Therefore, the difference in generalization errors is purely the effect of
implicit regularization by different algorithms.
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Fig. 13. Generalization performance of different SMD algorithms on the CIFAR-10 dataset using ResNet-18. ¢1¢ performs consistently better, while ¢
performs consistently worse.



